Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems

Author(s):  
K.C. Ramya ◽  
V. Jegathesan

<p>This paper deals with comparison of responses of the PI and the PID controlled bidirectional DC-DC converter systems. A coupled inductor is used in the present work to produce high gain. Open loop and closed loop controlled systems with PI and PID controllers are designed and simulated using Matlab tool. The principles of operation and simulation case studies are discussed in detail. The comparison is made in terms of rise time, fall time, peak overshoot and steady state error.</p>

2019 ◽  
Vol 8 (2S11) ◽  
pp. 4031-4034

Fly back converter is the most popular converter because of its simplicity, low part counts and isolation. It occupies less volume and it saves cost. Fly back converter steps up and step down the voltage with the same polarity. Open loop operation remains insensitive to the input voltage and load variations. Matlab Simulink model for Fly back converter is established using PI controller. Open loop Fly back converter system and closed loop fly back converter systems are simulated and their outcomes are compared. Comparison is done in terms of Rise time ,Settling time and steady state error


Author(s):  
Hanseung Woo ◽  
Kyoungchul Kong

Safety is one of important factors in control of mechatronic systems interacting with humans. In order to evaluate the safety of such systems, mechanical impedance is often utilized as it indicates the magnitude of reaction forces when the systems are subjected to motions. Namely, the mechatronic systems should have low mechanical impedance for improved safety. In this paper, a methodology to design controllers for reduction of mechanical impedance is proposed. For the proposed controller design, the mathematical definition of the mechanical impedance for open-loop and closed-loop systems is introduced. Then the controllers are designed for stable and unstable systems such that they effectively lower the magnitude of mechanical impedance with guaranteed stability. The proposed method is verified through case studies including simulations.


2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


2021 ◽  
Vol 24 (4) ◽  
pp. 1094-1111
Author(s):  
Atefeh Saeedian ◽  
Farshad Merrikh-Bayat ◽  
Abolfazl Jalilvand

Abstract This paper proposes a new method for tuning the parameters of multi-input multi-output (MIMO) fractional-order PID (FOPID) controller. The aim of the proposed method is to calculate the parameters of this controller such that the rise time and steady-state errors of the feedback system are minimized without violating the predetermined stability margins. Mathematically, this problem is formulated as maximizing the spectral norm of the open-loop transfer matrix at zero frequency subject to a constraint on the H∞ -norm of the sensitivity function. This problem is nonlinear in parameters of the MIMO FOPID, which can be solved using the iterative algorithm developed in this paper based on non-smooth H∞ synthesis.


Author(s):  
Ramya Devasahayam ◽  
Godwin Immanuel D

<p><span lang="EN-US">The work is concerning a multi-port dc-dc converter with improved time response and steady state output. Here the converter carries bare amount of switches for managing the power with mono inductance. The inductance and along with that the switched capacitance are pre owned to bring large voltage gain. This paper put forwarded an appropriate controller for the closed loop monitored high-gain converter with three ports. Higher is that the conversion rate. This converter is also a good interface between DC-source and load that aims to progressing time response with FLC and PI controller in the closed loop system. The converter with the PI controller and FLC is look over and the fast responses are compared with time domain specifications. The simulation outcome indicates that the FLC based converter brings most excellent time domain response.</span></p>


2015 ◽  
Vol 776 ◽  
pp. 390-395 ◽  
Author(s):  
Hilal Tayara ◽  
Deok Jin Lee ◽  
Kil To Chong

This paper introduces auto tuning of proportional-integral-derivative (PID) controllers of DC motor using particle swarm optimization (PSO) method. The DC motor was modeled in Simulink and PSO was implanted on FPGA “cyclone IV E” using the soft processor NIOS II. The results were efficient in reducing the steady state error, settling time, rise time and maximum overshoot in speed control of a DC motor.


Author(s):  
Vasilis Tsourapas ◽  
Jing Sun ◽  
Anna Stefanopoulou

In this work, we focus on robustness analysis of an integrated fuel cell and fuel reforming (FCFR) system, which relies on a feedback controller to mitigate hydrogen starvation and temperature overshoot during load transitions. The fuel reformer is used to process natural gas into a hydrogen rich flow to be utilized in a proton exchange membrane fuel cell (PEM-FC). The feedback controller uses the catalytic burner (CB) and the catalytic partial oxidizer (CPOX) temperatures as measurements and adjusts the air and fuel actuator commands to assure fast load following and high steady state efficiency. Several uncertainty sources which can potentially lead to closed loop performance deterioration are considered, including CPOX clogging, hydro-desulphurizer (HDS) clogging, fuel uncertainty and CB parameter uncertainty. Steady state and transient performance are analyzed for the different uncertainty scenarios, for both open and closed loop operation (i.e., with and without feedback control). The robustness of load following and CPOX temperature regulation of the closed loop system (feedforward and feedback controlled) is established, while the open loop system (feedforward controlled) is shown to be vulnerable to all sources of uncertainties considered.


Sign in / Sign up

Export Citation Format

Share Document