scholarly journals Напівемпіричний аналіз взаємодії алкоксипохідних 1,4-бенздіазепіну з ГАМКа-рецептором на підставі даних молекулярного докінгу та фармакологічного ефекту

Author(s):  
N. Ya. Golovenko ◽  
V. I. Pavlovskiy ◽  
I. P. Valivodz ◽  
V. B. Larionov

Introduction. Pharmacological spectrum of 1.4-benzodiazepine 3-alkoxy derivatives, in contrast to classical substances, has more prominent analgesic properties, but even among the synthesized and studied molecules there are compounds with different magnitude of this effect.The aim of the study – to evaluate the molecular docking parameters of the theoretically generated structures of 1.4-benzodiazepine alkoxy derivatives with the GABA receptor complex and to compare these data with the pharmacological activity of the synthesized compounds.The molecular docking procedure was carried out using the iGEMDOCK v2.1 program, optimized structures of already synthesized and theoretically designed molecules with differing substituents in the ortho position of the phenyl radical and the "7" position of the condensed system are generated in the Avogadro program (v 1.2.0). The average effective doses of compounds (penthylenetetrazole-induced seizures, 120 mg/kg, subcutaneously 30 min after compounds administration) were studied in white mice.The binding energy of all the generated structures is within the ranges of 81.6–96.8 kcal/mol. Virtual docking data analysis of substituted alkoxy derivatives allows identifying several binding sites inherent for 7-chloro- or 7-bromo-substituted benzodiazepine derivatives. The greatest influence on the binding of chlorine-substituted alkoxy derivatives have regions with a high polarity amino acids (16-23 D) and similar hydrophilicity and hydrophobicity. The contribution of Van der Waals and hydrogen interactions to the total binding energy is determined by the presence of halogen (chlorine or bromine). In penthylenetetrazole-induced seizures test the compounds containing the chlorophenyl substituent in the hetero ring were most active (ED50 (0.42±0.10) μmol/kg for the propyloxy derivative and (0.51±0.17) μmol/kg for the ethyloxy derivative) while for the compounds with the phenyl radical, the ED50 value were much higher (5.1±2.7) μmol/kg and (17.75±1.93) μmol/kg, respectively). The analgesic effect is mainly due to the lkoxy derivatives possibility of binding to a center containing residues of basic amino acids.

2018 ◽  
Vol 34 (5) ◽  
pp. 2211-2228 ◽  
Author(s):  
Kultida Thongnum ◽  
Saksit Chanthai

This work aims to investigate the inhibitory activity of capsaicin, which is one of capsaicinoid compounds, on these enzymes using a molecular docking and quantum calculation. Acarbose, a commercial diabetes drug, was also investigated for comparison. The docking results revealed that acarbose yields better inhibition efficiency with binding free energy (ΔGbinding) of about -8.2 to -11.9 kcal/mol, and inhibition constant (Ki) of about 0.0002 to 0.4 µM, whereas capsaicin provided the ΔGbinding of -5.8 to -6.1 kcal/mol and Ki of 23.7 to 45.9 µM. The total binding energy (ΔEbinding) between each inhibitor and amino acids in active site of enzyme obtained from quantum calculation with MP2/6-31G(d,p) level is in agreement with the ΔGbinding, i.e. the ΔEbinding of acarbose was larger negative than that of capsaicin. The amino acids interacting with inhibitor as hydrogen bond mainly contribute to the total binding energy. Nevertheless, it could be concluded that capsaicinoids have high potential to be developed as an alternative drug for diabetes disease.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Babar Ali ◽  
Qazi Mohammad Sajid Jamal ◽  
Showkat R. Mir ◽  
Saiba Shams ◽  
Mohammad Amjad Kamal

AbstractSince 3000 B.C., evergreen plant Thea sinensis (Theaceae) is used both as a social and medicinal beverage. Leaves of T. sinensis contain amino acids, vitamins, caffeine, polysaccharides and polyphenols. Most of the natural medicinal actions of tea are due to the availability and abundance of polyphenols mainly catechins. It has also been stated that some catechins were absorbed more rapidly than other compounds after the oral administration of tea and could increase the bio-enhancing activities of anticancer drugs by inhibiting P-glycoprotein (P-gp). The results of the molecular docking showed that polyphenols bind easily to the active P-gp site. All compounds exhibited fluctuating binding affinity ranged from −11.67 to −8.36 kcal/mol. Observed binding energy required for theaflavin to bind to P-gp was lowest (−11.67 kcal/mol). The obtained data that supports all the selected polyphenols inhibited P-gp and therefore may enhance the bioavailability of drugs. This study may play a vital role in finding hotspots in P-gp and eventually may be proved useful in designing compounds with high affinity and specificity to the protein.


2020 ◽  
Vol 14 (10) ◽  
pp. 52
Author(s):  
Usman Abdulfatai ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

In this present investigation, simulated molecular docking study of chloroquine and hydroxychloroquine compounds were investigated on the SARS-CoV2 enzyme to determine the types of amino acids responsible for the biochemical reaction at the binding site. A structure-based docking design technique was explored in designing a novel derivative of chloroquine for the treatment and management of new COVID 19 disease. To achieve this, the molecular docking simulation method was used to investigate the level of chloroquine and hydroxychloroquine (Drugs presently under clinical trial) interactions on SARS-CoV2 enzyme (a causative agent of COVID 19 disease). Chloroquine and hydroxychloroquine which has been debated as drugs for the management of COVID 19 were subjected to molecular docking analysis, and the binding energies generated were found to be -6.1 kcal/mol and -6.8 kcal/mol respectively. Moreover, novel 2-((4-((7-chloroquinolin-4 yl) amino)pentyl)((methylamino)methyl)amino) ethan-1-ol as an anti-SARS-CoV2 protease was designed through the structural modification of hydroxychloroquine. The binding energy of this drug candidate was found to be -6.9 kcal/mol. This novel drug was found to formed hydrogen and conventional interactions with the binding site of SARS-CoV2 protease through amino acids such as Glutamic acid (GLU166), Glycine (GLY143), Phenylalanine (PHE140), Asparagine (ASN142), Histidine (HIS163), His (HIS172, HIS41, HIS163), Leucine (LEU41, LEU27), Glycine (GLY143), Glutamine (GLN189), Methionine (MET49, MET165), Serine (SER 46), Cysteine (CYS145) and Threonine (THR25). With this binding energy, this new drug candidate could bind better to the human SARS-CoV2 protease’ binding site. This research provides a clue for other scientists on various ways of designing and identify the types of amino acids that may be responsible for biochemical action on SARS-CoV2 protease.


2019 ◽  
Vol 19 (22) ◽  
pp. 1952-1961 ◽  
Author(s):  
J.C. Sobrinho ◽  
A.F. Francisco ◽  
R. Simões-Silva ◽  
A.M. Kayano ◽  
J.J. Alfonso Ruiz Diaz ◽  
...  

Background: Several studies have aimed to identify molecules that inhibit the toxic actions of snake venom phospholipases A2 (PLA2s). Studies carried out with PLA2 inhibitors (PLIs) have been shown to be efficient in this assignment. Objective: This work aimed to analyze the interaction of peptides derived from Bothrops atrox PLIγ (atPLIγ) with a PLA2 and to evaluate the ability of these peptides to reduce phospholipase and myotoxic activities. Methods: Peptides were subjected to molecular docking with a homologous Lys49 PLA2 from B. atrox venom modeled by homology. Phospholipase activity neutralization assay was performed with BthTX-II and different ratios of the peptides. A catalytically active and an inactive PLA2 were purified from the B. atrox venom and used together in the in vitro myotoxic activity neutralization experiments with the peptides. Results: The peptides interacted with amino acids near the PLA2 hydrophobic channel and the loop that would be bound to calcium in Asp49 PLA2. They were able to reduce phospholipase activity and peptides DFCHNV and ATHEE reached the highest reduction levels, being these two peptides the best that also interacted in the in silico experiments. The peptides reduced the myotubes cell damage with a highlight for the DFCHNV peptide, which reduced by about 65%. It has been suggested that myotoxic activity reduction is related to the sites occupied in the PLA2 structure, which could corroborate the results observed in molecular docking. Conclusion: This study should contribute to the investigation of the potential of PLIs to inhibit the toxic effects of PLA2s.


Author(s):  
Amir Taherkhani ◽  
Athena Orangi ◽  
Shirin Moradkhani ◽  
Zahra Khamverdi

Background: Matrix metalloproteinase-8 (MMP-8) participates in degradation of different types of collagens in the extracellular matrix and basement membrane. Up-regulation of the MMP-8 has been demonstrated in many of disorders including cancer development, tooth caries, periodontal/peri-implant soft and hard tissue degeneration, and acute/chronic inflammation. Therefore, MMP-8 has become an encouraging target for therapeutic procedures for scientists. We carried out molecular docking approach to study the binding affinity of 29 flavonoids, as drug candidates, with the MMP-8. Pharmacokinetic and toxicological properties of the compounds were also studied. Moreover, it was attempted to identify the most important amino acids participating in ligand binding based on degree of each of the amino acids in the ligand-amino acid interaction network for MMP-8. Methods: Three-dimensional structure of the protein was gained from the RCSB database (PDB ID: 4QKZ). AutoDock version 4.0 and Cytoscape 3.7.2 were used for molecular docking and network analysis, respectively. Notably, the inhibitor of the protein in the crystalline structure of the 4QKZ was considered as a control test. Pharmacokinetic and toxicological features of compounds were predicted using bioinformatic web tools. Post-docking analyses were performed using BIOVIA Discovery Studio Visualizer version 19.1.0.18287. Results and Discussions: According to results, 24 of the studied compounds considered to be top potential inhibitors for MMP-8 based on their salient estimated free energy of binding and inhibition constant as compared with the control test: Apigenin-7-glucoside, nicotiflorin, luteolin, glabridin, taxifolin, apigenin, licochalcone A, quercetin, isorhamnetin, myricetin, herbacetin, kaemferol, epicatechin, chrysin, amentoflavone, rutin, orientin, epiafzelechin, quercetin-3-rhamnoside, formononetin, isoliquiritigenin, vitexin, catechine, isoquercitrin. Moreover, His-197 was found to be the most important amino acid involved in the ligand binding for the enzyme. Conclusion: The results of the current study could be used in the prevention and therapeutic procedures of a number of disorders such as cancer progression and invasion, oral diseases, and acute/chronic inflammation. Although, in vitro and in vivo tests are inevitable in the future.


Author(s):  
Shola Elijah Adeniji

Introduction: Mycobacterium tuberculosis has instigated a serious challenge toward the effective treatment of tuberculosis. The reoccurrence of the resistant strains of the disease to accessible drugs/medications has mandate for the development of more effective anti-tubercular agents with efficient activities. Time expended and costs in discovering and synthesizing new hypothetical drugs with improved biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. tuberculosis (TB). Meanwhile, to solve the problem stated, a new approach i.e. QSAR which establish connection between novel drugs with a better biological against M. tuberculosis is adopted. Methods: The anti-tubercular model established in this study to forecast the biological activities of some anti-tubercular compounds selected and to design new hypothetical drugs is subjective to the molecular descriptors; MATS7s, SM1_DzZ, SpMin4_Bhv, TDB3v and RDF70v. Ligand-receptor interactions between quinoline derivatives and the receptor (DNA gyrase) was carried out using molecular docking technique by employing the PyRx virtual screening software and discovery studio visualizer software. Furthermore, docking study indicates that compounds 20 of the derivatives with promising biological activity have the utmost binding energy of -17.79 kcal/mol. Results: Meanwhile, the interaction of the standard drug; isoniazid with the target enzyme was observed with the binding energy -14.6 kcal/mol which was significantly lesser than the binding energy of the ligand (compound 20).Therefore, compound 20 served as a template structure to designed compounds with more efficient activities. Among the compounds designed; compounds 20p was observed with better anti-tubercular activities with more prominent binding affinities of -24.3kcal/mol. Conclusion: The presumption of this research aid the medicinal chemists and pharmacist to design and synthesis a novel drug candidate against the tuberculosis. Moreover, in-vitro and in-vivo test could be carried out to validate the computational results.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.


2021 ◽  
Vol 25 (4) ◽  
pp. 497-502
Author(s):  
D. Shehu ◽  
S Danlami ◽  
M. Ya’u ◽  
A. Babandi ◽  
H.M. Yakasai ◽  
...  

Glutathione s-transferases(GSTs) are enzymes involved in the conjugation and deactivation of various xenobiotics including drugs. Thisin-silico study was undertaken in order to investigate the interaction between beta-class glutathione s-transferase and five selected antibiotics, namely; ampicillin, tetracycline, chloramphenicol, ciprofloxacin and cephalexin using molecular docking study. RaptorX server was used to predict the amino acids involved at the binding sitewhile molecular docking study was employed in order to investigate the binding interactions.RaptorX predicted several amino acids which were different from the ones observed in molecular docking because of the variability in the substrate binding site of GSTs however, all the amino acids predicted by RaptorX were also found to be involved in the GSH binding.Lys107, Phe109, Ser110, Leu113, Trp114, His115 and Arg123, Leu168 were the amino acids involved in the binding of various antibiotics to the substrate binding site of the protein while Ala9, Cys10, Leu32, Tyr51, Val52, Pro53, Glu65 and Ala66were involved in the binding of the co-substrate GSH to the binding site of the protein. The results indicated that all the antibiotics showed a good binding affinity with the beta class GST and are therefore capable of deactivating the drugs. With these, finding a beta class GST inhibitors alongside antibiotics during a treatment of diseases will be of beneficial in the current fight against antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document