scholarly journals Translating transmissibility measures into recommendations for coronavirus prevention

2020 ◽  
Vol 54 ◽  
pp. 43 ◽  
Author(s):  
Fredi Alexander Diaz-Quijano ◽  
Alfonso Javier Rodriguez-Morales ◽  
Eliseu Alves Waldman

The rapid increase in clinical cases of the new coronavirus disease, COVID-19, suggests high transmissibility. However, the estimates of the basic reproductive number reported in the literature vary widely. Considering this, we drew the function of contact-rate reduction required to control the transmission from both detectable and undetectable sources. Based on this, we offer a set of recommendations for symptomatic and asymptomatic populations during the current pandemic. Understanding the dynamics of transmission is essential to support government decisions and improve the community’s adherence to preventive measures.

2005 ◽  
Vol 13 (02) ◽  
pp. 131-150 ◽  
Author(s):  
I. A. MONEIM ◽  
D. GREENHALGH

An SIRS epidemic model with general periodic vaccination strategy is analyzed. This periodic vaccination strategy is discussed first for an SIRS model with seasonal variation in the contact rate of period T = 1 year. We start with the case where the vaccination strategy and the contact rate have the same period and then discuss the case where the period of the vaccination strategy is LT, where L is an integer. We investigate whether a periodic vaccination strategy may force the epidemic dynamics to have periodic behavior. We prove that our SIRS model has a unique periodic disease free solution (DFS) whose period is the same as that of the vaccination strategy, which is globally asymptotically stable when the basic reproductive number R0 is less than or equal to one in value. When R0 > 1, we prove that there exists a non-trivial periodic solution of period the same as that of the vaccination strategy. Some persistence results are also discussed. Threshold conditions for these periodic vaccination strategies to ensure that R0 ≤ 1 are derived.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kourosh Kabir ◽  
Ali Taherinia ◽  
Davoud Ashourloo ◽  
Ahmad Khosravi ◽  
Hossien Karim ◽  
...  

Abstract Background The first confirmed cases of COVID-19 in Iran were reported in Qom city. Subsequently, the neighboring provinces and gradually all 31 provinces of Iran were involved. This study aimed to investigate the case fatility rate, basic reproductive number in different period of epidemic, projection of daily and cumulative incidence cases and also spatiotemporal mapping of SARS-CoV-2 in Alborz province, Iran. Methods A confirmed case of COVID-19 infection was defined as a case with a positive result of viral nucleic acid testing in respiratory specimens. Serial interval (SI) was fitted by gamma distribution and considered the likelihood-based R0 using a branching process with Poisson likelihood. Seven days average of cases, deaths, doubling times and CFRs used to draw smooth charts. kernel density tool in Arc GIS (Esri) software has been employed to compute hot spot area of the study site. Results The maximum-likelihood value of R0 was 2.88 (95%, CI: 2.57–3.23) in the early 14 days of epidemic. The case fatility rate for Alborz province (Iran) on March 10, was 8.33% (95%, CI:6.3–11), and by April 20, it had an increasing trend and reached 12.9% (95%,CI:11.5–14.4). The doubling time has been increasing from about two days and then reached about 97 days on April 20, 2020, which shows the slowdown in the spread rate of the disease. Also, from March 26 to April 2, 2020 the whole Geographical area of Karj city was almost affected by SARS-CoV-2. Conclusions The R0 of COVID-19 in Alborz province was substantially high at the beginning of the epidemic, but with preventive measures and public education and GIS based monitoring of the cases,it has been reduced to 1.19 within two months. This reduction highpoints the attainment of preventive measures in place, however we must be ready for any second epidemic waves during the next months.


2005 ◽  
Vol 133 (2) ◽  
pp. 337-342 ◽  
Author(s):  
T. BALENGHIEN ◽  
K. CHALVET-MONFRAY ◽  
D. J. BICOUT ◽  
P. SABATIER

Contagious bovine pleuropneumonia (CBPP) is a cattle respiratory disease that represents one of the major threats to cattle health and production in sub-Saharan Africa. The transmission contact rate of CBPP plays a key role in the spreading dynamics of the disease. We have developed an approach based on the combination of a SEIR model describing the spread of CBPP with the dynamic of seroconversion to determine the transmission contact rate for CBPP. This method has been subsequently applied to serological diagnostic data obtained from an experimental vaccine trial. As a result, we find that the transmission contact rates for subclinical, clinical and chronic infective states are respectively, 0·084/N, 0·45 and 0·14/N per animal per day, where N is the herd population size, and the basic reproductive number corresponding to this trial (N=28) is R0=27.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750005 ◽  
Author(s):  
Ezekiel Dangbé ◽  
Antoine Perasso ◽  
Damakoa Irépran ◽  
David Békollé

Climate change influences more and more of our activities. These changes led to environmental changes which has in turn affected the spatial and temporal distribution of the incidence of vector-borne diseases. To establish the impact of climate on contact rate of vector-borne diseases, we examine the variation of prevalence of diseases according to season. In this paper, the goal is to establish that the basic reproductive number [Formula: see text] depends on the duration of transmission period and the date of the first conta-mination case that was declared ([Formula: see text]) in the specific case of malaria. We described the dynamics of transmission of malaria by using non-autonomous differential equations. We analyzed the stability of endemic equilibrium (EE) and disease-free equilibrium (DFE). We prove that the persistence of disease depends on minimum and maximum values of contact rate of vector-borne diseases.


2020 ◽  
Vol 13 (3) ◽  
pp. 549-566
Author(s):  
Abba Mahamane Oumarou ◽  
Saley Bisso

This paper focuses on the dynamics of spreads of a coronavirus disease (Covid-19).Through this paper, we study the impact of a contact rate in the transmission of the disease. We determine the basic reproductive number R0, by using the next generation matrix method. We also determine the Disease Free Equilibrium and Endemic Equilibrium points of our model. We prove that the Disease Free Equilibrium is asymptotically stable if R0 < 1 and unstable if R0 > 1. The asymptotical stability of Endemic Equilibrium is also establish. Numerical simulations are made to show the impact of contact rate in the spread of disease.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu Kong ◽  
Tao Li ◽  
Yuanmei Wang ◽  
Xinming Cheng ◽  
He Wang ◽  
...  

AbstractNowadays, online gambling has a great negative impact on the society. In order to study the effect of people’s psychological factors, anti-gambling policy, and social network topology on online gambling dynamics, a new SHGD (susceptible–hesitator–gambler–disclaimer) online gambling spreading model is proposed on scale-free networks. The spreading dynamics of online gambling is studied. The basic reproductive number $R_{0}$ R 0 is got and analyzed. The basic reproductive number $R_{0}$ R 0 is related to anti-gambling policy and the network topology. Then, gambling-free equilibrium $E_{0}$ E 0 and gambling-prevailing equilibrium $E_{ +} $ E + are obtained. The global stability of $E_{0}$ E 0 is analyzed. The global attractivity of $E_{ +} $ E + and the persistence of online gambling phenomenon are studied. Finally, the theoretical results are verified by some simulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Weiwei Ling ◽  
Pinxia Wu ◽  
Xiumei Li ◽  
Liangjin Xie

By using differential equations with discontinuous right-hand sides, a dynamic model for vector-borne infectious disease under the discontinuous removal of infected trees was established after understanding the transmission mechanism of Huanglongbing (HLB) disease in citrus trees. Through calculation, the basic reproductive number of the model can be attained and the properties of the model are discussed. On this basis, the existence and global stability of the calculated equilibria are verified. Moreover, it was found that different I0 in the control strategy cannot change the dynamic properties of HLB disease. However, the lower the value of I0, the fewer HLB-infected citrus trees, which provides a theoretical basis for controlling HLB disease and reducing expenditure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Yang ◽  
Angkana T. Huang ◽  
Bernardo Garcia-Carreras ◽  
William E. Hart ◽  
Andrea Staid ◽  
...  

AbstractNon-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with a median Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58–1.39) or face masks (median Reff 0.97, 95% CI 0.58–1.39). While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


Sign in / Sign up

Export Citation Format

Share Document