scholarly journals Epidemic size, trend and spatiotemporal mapping of SARS-CoV-2 using geographical information system in Alborz Province, Iran

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kourosh Kabir ◽  
Ali Taherinia ◽  
Davoud Ashourloo ◽  
Ahmad Khosravi ◽  
Hossien Karim ◽  
...  

Abstract Background The first confirmed cases of COVID-19 in Iran were reported in Qom city. Subsequently, the neighboring provinces and gradually all 31 provinces of Iran were involved. This study aimed to investigate the case fatility rate, basic reproductive number in different period of epidemic, projection of daily and cumulative incidence cases and also spatiotemporal mapping of SARS-CoV-2 in Alborz province, Iran. Methods A confirmed case of COVID-19 infection was defined as a case with a positive result of viral nucleic acid testing in respiratory specimens. Serial interval (SI) was fitted by gamma distribution and considered the likelihood-based R0 using a branching process with Poisson likelihood. Seven days average of cases, deaths, doubling times and CFRs used to draw smooth charts. kernel density tool in Arc GIS (Esri) software has been employed to compute hot spot area of the study site. Results The maximum-likelihood value of R0 was 2.88 (95%, CI: 2.57–3.23) in the early 14 days of epidemic. The case fatility rate for Alborz province (Iran) on March 10, was 8.33% (95%, CI:6.3–11), and by April 20, it had an increasing trend and reached 12.9% (95%,CI:11.5–14.4). The doubling time has been increasing from about two days and then reached about 97 days on April 20, 2020, which shows the slowdown in the spread rate of the disease. Also, from March 26 to April 2, 2020 the whole Geographical area of Karj city was almost affected by SARS-CoV-2. Conclusions The R0 of COVID-19 in Alborz province was substantially high at the beginning of the epidemic, but with preventive measures and public education and GIS based monitoring of the cases,it has been reduced to 1.19 within two months. This reduction highpoints the attainment of preventive measures in place, however we must be ready for any second epidemic waves during the next months.

2007 ◽  
Vol 5 (22) ◽  
pp. 545-553 ◽  
Author(s):  
N Arinaminpathy ◽  
A.R McLean

Disease control programmes for an influenza pandemic will rely initially on the deployment of antiviral drugs such as Tamiflu, until a vaccine becomes available. However, such control programmes may be severely hampered by logistical constraints such as a finite stockpile of drugs and a limit on the distribution rate. We study the effects of such constraints using a compartmental modelling approach. We find that the most aggressive possible antiviral programme minimizes the final epidemic size, even if this should lead to premature stockpile run-out. Moreover, if the basic reproductive number R 0 is not too high, such a policy can avoid run-out altogether. However, where run-out would occur, such benefits must be weighed against the possibility of a higher epidemic peak than if a more conservative policy were followed. Where there is a maximum number of treatment courses that can be dispensed per day, reflecting a manpower limit on antiviral distribution, our results suggest that such a constraint is unlikely to have a significant impact (i.e. increasing the final epidemic size by more than 10%), as long as drug courses sufficient to treat at least 6% of the population can be dispensed per day.


2020 ◽  
Author(s):  
Peter Czuppon ◽  
François Blanquart ◽  
Florence Débarre

AbstractThe identification of a first case (e.g. by a disease-related death or hospitalization event) raises the question of the actual size of a local outbreak. Quick estimates of the outbreak size are required to assess the necessary testing, contact tracing and potential containment effort. Using general branching processes and assuming that epidemic parameters (including the basic reproductive number) are constant over time, we characterize the distribution of the first hospitalization time and of the epidemic size at this random time. We find that previous estimates either overestimate or largely underestimate the actual epidemic size. In addition, we provide upper and lower bounds for the number of infectious individuals of the local outbreak over time. The upper bound is the cumulative epidemic size, and the lower bound is a constant fraction of it. Lastly, we compute the number of detectable cases if one were to test the whole local outbreak at a single point in time. In a growing epidemic, most individuals have been infected recently, which can strongly limit the detection of infected individuals when there is a delay between an infection and its potential detection. Overall, our analysis provides new analytical estimates about the epidemic size at identification of a first disease-related case. This piece of information is important to inform policy makers during the early stages of an epidemic outbreak.


2020 ◽  
Vol 54 ◽  
pp. 43 ◽  
Author(s):  
Fredi Alexander Diaz-Quijano ◽  
Alfonso Javier Rodriguez-Morales ◽  
Eliseu Alves Waldman

The rapid increase in clinical cases of the new coronavirus disease, COVID-19, suggests high transmissibility. However, the estimates of the basic reproductive number reported in the literature vary widely. Considering this, we drew the function of contact-rate reduction required to control the transmission from both detectable and undetectable sources. Based on this, we offer a set of recommendations for symptomatic and asymptomatic populations during the current pandemic. Understanding the dynamics of transmission is essential to support government decisions and improve the community’s adherence to preventive measures.


2020 ◽  
Vol 17 (172) ◽  
pp. 20200393 ◽  
Author(s):  
Laurent Hébert-Dufresne ◽  
Benjamin M. Althouse ◽  
Samuel V. Scarpino ◽  
Antoine Allard

The basic reproductive number, R 0 , is one of the most common and most commonly misapplied numbers in public health. Often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that different epidemics can exhibit, even when they have the same R 0 . Here, we reformulate and extend a classic result from random network theory to forecast the size of an epidemic using estimates of the distribution of secondary infections, leveraging both its average R 0 and the underlying heterogeneity. Importantly, epidemics with lower R 0 can be larger if they spread more homogeneously (and are therefore more robust to stochastic fluctuations). We illustrate the potential of this approach using different real epidemics with known estimates for R 0 , heterogeneity and epidemic size in the absence of significant intervention. Further, we discuss the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19 the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R 0 .


Author(s):  
Laurent Hébert-Dufresne ◽  
Benjamin M. Althouse ◽  
Samuel V. Scarpino ◽  
Antoine Allard

The basic reproductive number — R0 — is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two different pathogens can exhibit, even when they have the same R0 [1–3]. Here, we show how to predict outbreak size using estimates of the distribution of secondary infections, leveraging both its average R0 and the underlying heterogeneity. To do so, we reformulate and extend a classic result from random network theory [4] that relies on contact tracing data to simultaneously determine the first moment (R0) and the higher moments (representing the heterogeneity) in the distribution of secondary infections. Further, we show the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19, the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R0 when predicting epidemic size.


2021 ◽  
Vol 376 (1829) ◽  
pp. 20200265
Author(s):  
Jonathan M. Read ◽  
Jessica R. E. Bridgen ◽  
Derek A. T. Cummings ◽  
Antonia Ho ◽  
Chris P. Jewell

Since it was first identified, the epidemic scale of the recently emerged novel coronavirus (2019-nCoV) in Wuhan, China, has increased rapidly, with cases arising across China and other countries and regions. Using a transmission model, we estimate a basic reproductive number of 3.11 (95% CI, 2.39–4.13), indicating that 58–76% of transmissions must be prevented to stop increasing. We also estimate a case ascertainment rate in Wuhan of 5.0% (95% CI, 3.6–7.4). The true size of the epidemic may be significantly greater than the published case counts suggest, with our model estimating 21 022 (prediction interval, 11 090–33 490) total infections in Wuhan between 1 and 22 January. We discuss our findings in the light of more recent information. This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu Kong ◽  
Tao Li ◽  
Yuanmei Wang ◽  
Xinming Cheng ◽  
He Wang ◽  
...  

AbstractNowadays, online gambling has a great negative impact on the society. In order to study the effect of people’s psychological factors, anti-gambling policy, and social network topology on online gambling dynamics, a new SHGD (susceptible–hesitator–gambler–disclaimer) online gambling spreading model is proposed on scale-free networks. The spreading dynamics of online gambling is studied. The basic reproductive number $R_{0}$ R 0 is got and analyzed. The basic reproductive number $R_{0}$ R 0 is related to anti-gambling policy and the network topology. Then, gambling-free equilibrium $E_{0}$ E 0 and gambling-prevailing equilibrium $E_{ +} $ E + are obtained. The global stability of $E_{0}$ E 0 is analyzed. The global attractivity of $E_{ +} $ E + and the persistence of online gambling phenomenon are studied. Finally, the theoretical results are verified by some simulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Weiwei Ling ◽  
Pinxia Wu ◽  
Xiumei Li ◽  
Liangjin Xie

By using differential equations with discontinuous right-hand sides, a dynamic model for vector-borne infectious disease under the discontinuous removal of infected trees was established after understanding the transmission mechanism of Huanglongbing (HLB) disease in citrus trees. Through calculation, the basic reproductive number of the model can be attained and the properties of the model are discussed. On this basis, the existence and global stability of the calculated equilibria are verified. Moreover, it was found that different I0 in the control strategy cannot change the dynamic properties of HLB disease. However, the lower the value of I0, the fewer HLB-infected citrus trees, which provides a theoretical basis for controlling HLB disease and reducing expenditure.


Sign in / Sign up

Export Citation Format

Share Document