Abstract 1125: Mulberry Leaf Ameliorates The Production Of Adipocytokines By Inhibiting Oxidative Stress In White Adipose Tissue In db/db Mice

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Masayuki Sugimoto ◽  
Hidenori Arai ◽  
Yukinori Tamura ◽  
Toshinori Murayama ◽  
Koh Ono ◽  
...  

Mulberry leaf (ML) is commonly used to feed silkworms. Previous study showed that ML ameliorates atherosclerosis. However, its mechanism is not completely understood. Because dysregulated production of adipocytokines is involved in the development of the metabolic syndrome and cardiovascular disease, we examined the effect of ML on the production of adipocytokines and metabolic disorders related to the metabolic syndrome, and compared its effect with that of a PPARγ agonist, pioglitazone (Pio). By treating obese diabetic db/db mice with ML, Pio, and their combination, we investigated the mechanism by which they improve metabolic disorders. In this study, db/+m (lean control) and db/db mice were fed a standard diet with or without 3% (w/w) ML and/or 0.01% (w/w) Pio for 12 weeks from 9 weeks of age. At the end of the experiment we found that ML decreased plasma glucose and triglyceride by 32% and 30%, respectively. Interestingly, administration of ML in addition to Pio showed additive effects; further 40% and 30% reduction in glucose and triglyceride compared with Pio treatment, respectively. Moreover, administration of ML in addition to Pio suppressed the body weight increase by Pio treatment and reduced visceral/subcutaneous fat ratio by 20% compared with control db/db mice. Importantly, ML treatment increased expression of adiponectin in white adipose tissue (WAT) by 40%, which was only found in db/db mice, not in control db/+m mice. Combination of ML and Pio increased plasma adiponectin concentrations by 25% and its expression in WAT by 17% compared with Pio alone. In contrast, ML decreased expression of TNF-α and MCP-1 by 25% and 20%, respectively, and the addition of Pio resulted in a further decrease of these cytokines by about 45%. To study the mechanism, we examined the role of oxidative stress. ML decreased the amount of lipid peroxides by 43% and the expression of NADPH oxidase subunits in WAT, which was consistent with the results of TNF-α and MCP-1. Thus our results indicate that ML ameliorates adipocytokine dysregulation by inhibiting oxidative stress in WAT of obese mice, and that ML may have a potential for the treatment of the metabolic syndrome as well as reducing adverse effects of Pio.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Kaivan Khavandi ◽  
Adam Greenstein ◽  
Sarah Withers ◽  
Kazuhiko Sonoyama ◽  
Sarah Lewis ◽  
...  

In order to investigate the contribution of perivascular adipose tissue (PVAT) to arterial function, a total of 55 small arteries harvested from 35 skin biopsies of patients with Metabolic Syndrome and matched controls were mounted as ring preparations in a wire myograph. Contractility to cumulative doses of Norepinephrine in the presence or absence of PVAT showed an anticontractile effect in arteries from healthy volunteers (p=0.009), which was lost in patients with Metabolic Syndrome. Bioassay studies confirmed that PVAT releases a hydrophilic anticontractile factor in health, which is absent in obesity. Using a soluble fragment of the human Type 1 receptor, we identified that the anticontractile factor was adiponectin, which is the sole mediator of vasodilation, acting by increasing endothelial bioavailability of nitric oxide. Significant endothelial dysfunction was observed in patients with Metabolic Syndrome (p<0.001). Quantitative image analysis of adipose tissue revealed significantly increased adipocyte cell size in patients with Metabolic Syndrome, compared with healthy controls (p<0.006). There was immunohistochemical evidence of inflammation with upregulation of TNF-alpha receptor 1 in these patients (p<0.001). Application of exogenous TNF-alpha abolished the anticontractile effect of PVAT by reducing adiponectin bioavailability. Oxidative stress also induced by cytokines TNF-alpha and IL-6 but not IL-1, reduced adiponectin production from PVAT and increased basal tone. When the obese microenvironment was replicated in vitro by inflicting hypoxia on PVAT, adiponectin activity was lost but then rescued by incubation with cytokine antagonists. Further application of the adiponectin receptor fragment abolished PVAT relaxation. We conclude that in healthy arteries, PVAT releases adiponectin which reduces vascular tone. In obesity, this is lost by a cascade of adipocyte hypertrophy, hypoxia, inflammation and oxidative stress. The resulting vasoconstriction contributes to hypertension, hypertriglyceridaemia and insulin resistance. Direct targeting of adiponectin release from PVAT therefore provides a novel therapeutic opportunity in the Metabolic Syndrome.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Saeid Golbidi ◽  
Ismail Laher

The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome. Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important adipokines (adiponectin, leptin, TNF-α, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored these adipokines as a clinical outcome before and after exercise.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Eduardo Spinedi ◽  
Daniel P. Cardinali

Polycystic ovary syndrome is a highly frequent reproductive-endocrine disorder affecting up to 8–10% of women worldwide at reproductive age. Although its etiology is not fully understood, evidence suggests that insulin resistance, with or without compensatory hyperinsulinemia, and hyperandrogenism are very common features of the polycystic ovary syndrome phenotype. Dysfunctional white adipose tissue has been identified as a major contributing factor for insulin resistance in polycystic ovary syndrome. Environmental (e.g., chronodisruption) and genetic/epigenetic factors may also play relevant roles in syndrome development. Overweight and/or obesity are very common in women with polycystic ovary syndrome, thus suggesting that some polycystic ovary syndrome and metabolic syndrome female phenotypes share common characteristics. Sleep disturbances have been reported to double in women with PCOS and obstructive sleep apnea is a common feature in polycystic ovary syndrome patients. Maturation of the luteinizing hormone-releasing hormone secretion pattern in girls in puberty is closely related to changes in the sleep-wake cycle and could have relevance in the pathogenesis of polycystic ovary syndrome. This review article focuses on two main issues in the polycystic ovary syndrome-metabolic syndrome phenotype development: (a) the impact of androgen excess on white adipose tissue function and (b) the possible efficacy of adjuvant melatonin therapy to improve the chronobiologic profile in polycystic ovary syndrome-metabolic syndrome individuals. Genetic variants in melatonin receptor have been linked to increased risk of developing polycystic ovary syndrome, to impairments in insulin secretion, and to increased fasting glucose levels. Melatonin therapy may protect against several metabolic syndrome comorbidities in polycystic ovary syndrome and could be applied from the initial phases of patients’ treatment.


2004 ◽  
Vol 287 (2) ◽  
pp. E331-E339 ◽  
Author(s):  
Muhammad R. Peeraully ◽  
John R. Jenkins ◽  
Paul Trayhurn

The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (β3-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARγ agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (≤40-fold) in 3T3-L1 adipocytes occurred with TNF-α. RT-PCR showed that the genes encoding the p75 and trkA NGF receptors were expressed in mouse WAT. These results demonstrate that white adipocytes secrete NGF (an adipokine), NGF synthesis being influenced by several factors with TNF-α having a major stimulatory effect. We suggest that NGF is a target-derived neurotropin and an inflammatory response protein in white adipocytes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Lakshini Weerasekera ◽  
Caroline Rudnicka ◽  
Qing-Xiang Sang ◽  
Joanne E. Curran ◽  
Matthew P. Johnson ◽  
...  

Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with insulin resistance, which may ultimately culminate in type 2 diabetes (T2D). We sought to ascertain whether the human metalloproteinase A Disintegrin and Metalloproteinase 19 (ADAM19) correlates with parameters of the metabolic syndrome in humans and mice. To determine the potential novel role of ADAM19 in the metabolic syndrome, we first conducted microarray studies on peripheral blood mononuclear cells from a well-characterised human cohort. Secondly, we examined the expression of ADAM19 in liver and gonadal white adipose tissue using an in vivo diet induced obesity mouse model. Finally, we investigated the effect of neutralising ADAM19 on diet induced weight gain, insulin resistance in vivo, and liver TNF-α levels. Significantly, we show that, in humans, ADAM19 strongly correlates with parameters of the metabolic syndrome, particularly BMI, relative fat, HOMA-IR, and triglycerides. Furthermore, we identified that ADAM19 expression was markedly increased in the liver and gonadal white adipose tissue of obese and T2D mice. Excitingly, we demonstrate in our diet induced obesity mouse model that neutralising ADAM19 therapy results in weight loss, improves insulin sensitivity, and reduces liver TNF-α levels. Our novel data suggest that ADAM19 is pro-obesogenic and enhances insulin resistance. Therefore, neutralisation of ADAM19 may be a potential therapeutic approach to treat obesity and T2D.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 594
Author(s):  
Shima Taherkhani ◽  
Katsuhiko Suzuki ◽  
Ruheea Taskin Ruhee

One of the leading causes of obesity associated with oxidative stress (OS) is excessive consumption of nutrients, especially fast-foods, and a sedentary lifestyle, characterized by the ample accumulation of lipid in adipose tissue (AT). When the body needs energy, the lipid is broken down into glycerol (G) and free fatty acids (FFA) during the lipolysis process and transferred to various tissues in the body. Materials secreted from AT, especially adipocytokines (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and reactive oxygen species (ROS), are impressive in causing inflammation and OS of AT. There are several ways to improve obesity, but researchers have highly regarded the use of antioxidant supplements due to their neutralizing properties in removing ROS. In this review, we have examined the AT response to OS to antioxidant supplements focusing on animal studies. The results are inconsistent due to differences in the study duration and diversity in animals (strain, age, and sex). Therefore, there is a need for different studies, especially in humans.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Eduardo Fuentes ◽  
Francisco Fuentes ◽  
Gemma Vilahur ◽  
Lina Badimon ◽  
Iván Palomo

The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Shigeru Murakami ◽  
Chihiro Hirazawa ◽  
Rina Yoshikawa ◽  
Toshiki Mizutani ◽  
Takuma Ohya ◽  
...  

Abstract Background The obesity epidemic has become a serious public health problem in many countries worldwide. Seaweed has few calories and is rich in active nutritional components necessary for health promotion and disease prevention. The aim of this study was to investigate the effects of the Campylaephora hypnaeoides J. Agardh (C. hypnaeoides), an edible seaweed traditionally eaten in Japan, on high-fat (HF) diet-induced obesity and related metabolic diseases in mice. Methods Male C57BL/6J mice were randomly divided into the following groups: normal diet group, HF diet group, HF diet supplemented with 2% C. hypnaeoides, and HF diet supplemented with 6% C. hypnaeoides. After 13 weeks of treatment, the weight of the white adipose tissue and liver, and the serum levels of glucose, insulin, adipokines, and lipids were measured. Hepatic levels of adipokines, oxidant markers, and antioxidant markers were also determined. Insulin resistance was assessed by a glucose tolerance test. Polysaccharides of C. hypnaeoides were purified and their molecular weight was determined by high-performance seize exclusion chromatography. The anti-inflammatory effects of purified polysaccharides were evaluated in RAW264.7 cells. Results Treatment of HF diet-induced obese mice with C. hypnaeoides for 13 weeks suppressed the increase in body weight and white adipose tissue weight. It also ameliorated insulin resistance, hyperglycemia, hepatic steatosis, and hypercholesterolemia. The ingestion of an HF diet increased serum levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1), while it decreased serum adiponectin levels. In the liver, an HF diet markedly increased the MDA, TNF-α, and interleukin-6 (IL-6) levels, while it decreased glutathione and superoxide dismutase. These metabolic changes induced by HF diet feeding were ameliorated by dietary C. hypnaeoides. Purified polysaccharides and ethanol extract from C. hypnaeoides inhibited the lipopolysaccharide-induced overproduction of nitric oxide and TNF-α in macrophage RAW264.7 cells. Conclusions The present results indicated that C. hypnaeoides was able to alleviate HF diet-induced metabolic disorders, including obesity, hyperglycemia, hepatic steatosis, and hypercholesterolemia by attenuating inflammation and improving the antioxidant capacity in mice. Polysaccharides and polyphenols may be involved in these beneficial effects of C. hypnaeoides.


Sign in / Sign up

Export Citation Format

Share Document