Abstract 12836: Low-Intensity Pulsed Ultrasound Ameliorates Left Ventricular Dysfunction in a Porcine Model of Chronic Myocardial Ischemia -Potential Involvement of Mechanotransduction

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Tomohiko Shindo ◽  
Kenta Ito ◽  
Kenichiro Hanawa ◽  
Kentaro Aizawa ◽  
Takashi Shiroto ◽  
...  

Purpose: Despite recent progress in the management of ischemic heart disease (IHD), the number of patients with severe IHD is increasing. In this study, we aimed to develop low-intensity pulsed ultrasound (LIPUS) therapy for the treatment of IHD and to elucidate the underlying molecular mechanisms for the LIPUS-induced angiogenesis. Methods and Results: We first confirmed that the LIPUS up-regulated mRNA expression of vascular endothelial growth factor (VEGF) with a peak at 32-cycle in cultured human vascular endothelial cells (HUVECs). Then, we examined the in vivo effects of LIPUS in a porcine model of chronic myocardial ischemia with reduced left ventricular ejection fraction (LVEF) (n=28). The heart was treated with either sham or LIPUS (32-cycle, 20 min) at 3 different short axis levels (n=14 each). Four weeks after the therapy, LVEF was significantly improved in the LIPUS group (46±4 to 57±5%, P<0.05), whereas it remained unchanged in the control group. Capillary density and regional myocardial blood flow in the ischemic region were also increased in the LIPUS group but not in the control group. The protein expressions of VEGF, eNOS and bFGF in the ischemic area were enhanced in the LIPUS group compared with the control group. To further examine the signaling pathways responsible for the LIPUS-induced angiogenesis, HUVECs were transfected with siRNA or scrambled siRNA of either β1 integrin or caveolin-1. Knockdown of either β1 integrin or caveolin-1 with siRNA suppressed the LIPUS-induced up-regulation of VEGF. siRNA-mediated suppression of either focal adhesion kinase (FAK) or Fyn also inhibited the LIPUS-induced up-regulation of VEGF. Knockdown of these molecules with siRNA was confirmed with real-time PCR. Conclusions: These results suggest that the LIPUS therapy is promising as a new, non-invasive therapy for IHD and that β1 integrin and caveolin-1 may be involved in underlying molecular mechanisms for the beneficial effects of the LIPUS.

2020 ◽  
Author(s):  
Kun Zhao ◽  
Jing Zhang ◽  
Tianhua Xu ◽  
Chuanxi Yang ◽  
Liqing Weng ◽  
...  

Abstract Background: Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by Angiotensin II (AngII). Concerning the fact that low‐intensity pulsed ultrasound (LIPUS) has been reported to improve cardiac dysfunction and myocardial fibrosis in myocardial infarction (MI) through mechanotransductionanditsdownstream pathways, we aimed to investigate whether LIPUS could also exert a protective effect on ameliorating AngII-induced cardiac hypertrophy and fibrosis andand if so, to further elucidate the underlying molecular mechanisms.Methods: In our study, we used AngII to mimic the animal and cell culture models of cardiac hypertrophy and fibrosis, where LIPUS irradiation (0.5MHz, 77.20mW/cm2) was applied for 20 minutes every 2 days from 1 week before surgery to 4 weeks after surgery in vivo, and every 6 hours for a total of 2 times in vitro. Following that, the levels of cardiac hypertrophy and fibrosis were evaluated by echocardiographic, histopathological, and molecular biological methods. Results: Our results showed that LIPUS irradiation could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-inducedrelease of inflammatory cytokines, while the protective effects were limited on cardiac hypertrophy in vitro. Given that LIPUS irradiation increased the expression of caveolin-1 related to mechanical stimulation, we inhibited caveolin-1 activity with pyrazolopyrimidine 2 (pp2) in vitro, by which LIPUS-induced downregulation of inflammation was reversed and the anti-fibrosis effects of LIPUS irradiation were absent. Conclusions: Taken together, these results indicate that LIPUS irradiation could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway, providing new insights for the development of novel therapeuticapparatus in clinical practice.


2021 ◽  
Vol 11 (2) ◽  
pp. 229-239
Author(s):  
Yun Li ◽  
Guanghua Liu ◽  
Feng Xiao ◽  
Wenqin Gu ◽  
Zhengdong Gao ◽  
...  

We did this research to observe the effect of LIPUS on long bone fracture repair and caveolin-1, β-catenin signaling expression in the radius defects of rabbits, to explore its possible molecular mechanisms. 24 male New Zealand rabbits with bilateral radial bone defects were divided into 4 groups randomly, n = 6. The right side had daily LIPUS exposure for 20 minutes, while the left received sham treatment. After 7, 14, 21, 28 days, respectively, fracture healing was observed by X-ray imaging and Dual Energy X-ray Absorptiometry (DXA) scan, specimens were harvested for histology, immunohistochemistry, and gene expression analysis. We found that LIPUS brought forward endochondral ossification, increased the bone callus size without changes in Bone Mineral Density (BMD). The caveolin-1 expression increased first then decreased, while the β-catenin kept growing during the process. These demonstrated that caveolin-1 participated in fracture healing accelerated by LIPUS, which was speculated to play a dual role in β-catenin signaling expression.


Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 457
Author(s):  
Milad Etemadi Sh ◽  
Nan-Chen Hsieh ◽  
Seyed Shahin Movahed Mohammadi ◽  
Shahrooz Momeni ◽  
Seyed Mohammad Razavi ◽  
...  

Background and Objectives: Mechanical stimulation can improve the structural properties of the fracture site and induce the differentiation of different cell types for bone regeneration. This study aimed to compare the effect of low-intensity pulsed ultrasound stimulation (LIPUS) versus whole body vibration (WBV) on healing of mandibular bone defects. Materials and Methods: A mandibular defect was created in 66 rats. The rats were randomly divided into two groups of rats. Each group was subdivided randomly by three groups (n = 11) as follows: (I) control group, (II) treatment with LIPUS, and (III) treatment with WBV. The radiographic changes in bone density, the ratio of lamellar bone to the entire bone volume, the ratio of the newly formed bone to the connective tissue and inflammation grade were evaluated after 1 and 2 months. Results: LIPUS significantly increased the radiographic bone density change compared to the control group at the first and second month postoperatively (p < 0.01). WBV only significantly increased the bone density compared to the control group at the second month after the surgery (p < 0.01). Conclusions: Application of LIPUS and WBV may enhance the regeneration of mandibular bone defects in rats. Although LIPUS and WBV are effective in mandibular bone healing, the effects of LIPUS are faster and greater than WBV.


Author(s):  
P. Shanmuga Raju ◽  
Chokkarapu Ramu ◽  
N. S. Harshavardhan ◽  
K. Rajender ◽  
G. Sachin

<p class="abstract"><strong>Background:</strong> The study aim was to determine the effect of low intensity pulsed ultrasound therapy to reduce the effusion volumes and pain in patients with Knee OA.</p><p class="abstract"><strong>Methods:</strong> This study design was randomized controlled trial. Total 50 patients diagnosed with Knee osteoarthritis were randomly assigned to two groups. Group I was using treatment of low intensity pulsed ultrasound therapy and group II was administered TENS with home exercise respectively. Treatments were 6 days per week and duration of 2 week. The amount of effusion volume will be measured via ultrasonograpy in knee.<strong></strong></p><p class="abstract"><strong>Results:</strong> The<strong> </strong>maximum number of cases are lying in age group &gt;60 years which is 28% and 40% in cases and control group respectively and age distribution in both the group is statistically not significant. The mean age of patients in cases and control group is 57.08±7.40 years and 58.04±9.93 years respectively.</p><p class="abstract"><strong>Conclusions:</strong> Low intensity pulsed ultrasound therapy significantly reduced the effusion volumes and pain in patients with knee osteoarthritis.</p>


2018 ◽  
pp. 38-42 ◽  
Author(s):  
S.P. Rubnikovich ◽  
I.S. Khomich

The aim was to study the nature of the morphological changes over time in the bone tissue around the implants under the influence of low-intensity pulsed ultrasound in the experiment. Materials and methods. Experimental studies were carried out on rabbits of the chinchilla breed, with dental implants installed in the tibia – two experimental groups with ultrasound and one control group. The animals were withdrawn from the experiment at 1, 2, 4 and 8 weeks and histological examination of the sections of peri-implant tissues was carried out. Results. The processes of osseointegration of dental implants in all groups of animals occurred without disrupting the normal process sequence. In the early stages granulation tissue is formed, later it is replaced by fibrous-reticular and coarse-fibrous bone tissue, and at the end – by a more mature lamellar bone tissue. However, the timing and degree of maturation of bone tissue, as well as osseointegration of implants in groups using low-frequency low-intensity pulsed ultrasound and without it differed significantly. The study showed that ultrasound exposure to implants and surrounding tissues induces osteoreparation processes, stimulating neoangiogenesis in granulation and newly formed bone tissue. Conclusion. Application of ultrasound to implants and subsequent application to the peri-implant tissues during and after dental implantation promotes the formation of bone tissue, identical by the histostructure to the maternal bone.


Author(s):  
Larissa Dragonetti Bertin ◽  
Deise Aparecida Almeida Pires-Oliveira ◽  
Priscila Daniela Oliveira ◽  
Juliana Almeida Serpeloni ◽  
Stheace Kelly Fernandes Szezerbaty ◽  
...  

Introduction: In vitro and in vivo put in evidence that the Low Intensity Pulsed Ultrasound therapy exerts a significant influence on cell function (cytoskeleton organization, stimulation of mitochondrial activity, ATP levels and plasma membrane). Objective: This study will analyze the radiation of low intensity pulsed ultrasound in fibroblast cells L 929. Method: In this study are presented the data from each exposure group average and standard deviation in each moment of evaluation (24 hours, 48 hours and 72 hours). The control group (received no radiation), 0.2 W/cm2 with 10% pulse regime (1: 9 duty cycle), 0.2 W / cm2 with 20% pulse regime (2: 8 cycle work), 0.4 W/cm2 with pulse scheme 10% (1: 9 duty cycle), 0.4 W/cm2 with pulse scheme 20% (2: 8 duty cycle). The analyzes will be performed through optical microscopy, MTT method 3 - (4,5-dimethylthiazol-2-yl) -2,5 diphenyl tetrazolium bromide, within the incubation times of 24, 48 and 72 hours. Results: Given the above study, the results presented in this project will be directed to increase the stimulation process and proliferation of fibroblast cells from the pulsed ultrasonic irradiation of low intensity, correlating with the healing process, neovascularization and repair. Conclusion: Therefore, the study of the effect of ultrasound from cell culture provides us with a simple and informative model on the significant aspects of the use of physical therapy in vivo system.


Sign in / Sign up

Export Citation Format

Share Document