Abstract 18116: Genetic Associations With Atherosclerotic Abdominal Aortic Calcification

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Rajeev Malhotra ◽  
Andreas C Mauer ◽  
Jie Yao ◽  
Xiuqing Guo ◽  
Albert V Smith ◽  
...  

Background: There is limited information regarding genetic contributions to atherosclerotic aortic calcification, an important predictor of cardiovascular disease. Methods: We conducted a genome-wide association study (GWAS) meta-analysis with subsequent replication analysis to define single nucleotide polymorphisms (SNPs) associated with abdominal (AAC) or thoracic aortic calcification (TAC). AAC and TAC were quantified using multi-detector computed tomography. SNPs were assayed by Illumina or Affymetrix arrays and imputation at the cohort level was performed using data from the 1000 Genomes project. Results: 9417 individuals of European descent from four cohorts of the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortium were included in the AAC discovery analysis and 8422 individuals from five cohorts in the TAC discovery analysis. SNPs achieving genome-wide significance were tested for replication in four additional cohorts with Hispanic-American (HA) and African-American (AA) participants. Two regions contained SNPs associated at a genome-wide level for AAC (p<5.0x10 -8 , Table), the HDAC9 (chromosome 7, 6 SNPs) and RAP1GAP (chromosome 1, 2 SNPs) genetic loci. All six HDAC9 SNPs were associated with AAC in HA. Among these, rs2107595 was associated with AAC both in HA (p=2.8x10 -6 ) and in AA (p=0.01). SNPs in RAP1GAP were not associated with AAC in the replication analysis. No SNPs were associated with TAC at the genome-wide threshold. SNPs in the HDAC9 locus were associated with other forms of calcification (coronary artery calcification) as well as clinically apparent coronary heart disease (p<0.05). Conclusions: SNPs in the HDAC9 locus are associated with the presence of AAC in participants of European descent. This association was replicated in other ethnic groups in the United States. These findings suggest a novel role for HDAC9 in the development of abdominal aortic calcification.

2020 ◽  
Author(s):  
Catherine Stein ◽  
Penelope Bencheck ◽  
Jacquelaine Bartlett ◽  
Robert P Igo ◽  
Rafal S Sobota ◽  
...  

Background: Tuberculosis (TB) is the most deadly infectious disease globally and highly prevalent in the developing world, especially sub-Saharan Africa. Even though a third of humans are exposed to Myocbacterium tuberculosis (Mtb), most infected immunocompetent individuals do not develop active TB. In contrast, for individuals infected with both TB and the human immunodeficiency virus (HIV), the risk of active disease is 10% or more per year. Previously, we identified in a genome-wide association study a region on chromosome 5 that was associated with resistance to TB. This region included epigenetic marks that could influence gene regulation so we hypothesized that HIV-infected individuals exposed to Mtb, who remain disease free, carry epigenetic changes that strongly protect them from active TB. To test this hypothesis, we conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania. Results: In 221 HIV-infected adults from Uganda and Tanzania, we identified 3 regions of interest that included markers that were differentially methylated between TB cases and LTBI controls, that also included methylation QTLs and associated SNPs: chromosome 1 (RNF220, p=4x10-5), chromosome 2 (between COPS8 and COL6A3 genes, p=2.7x10-5), and chromosome 5 (CEP72, p=1.3x10-5). These methylation results colocalized with associated SNPs, methylation QTLs, and methylation x SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. Conclusion: Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.


Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Lindsay Fernández-Rhodes ◽  
Mariaelisa Graff ◽  
Jonathan Bradfield ◽  
Yujie Wang ◽  
Esteban J Parra ◽  
...  

Childhood obesity is a global health concern due to its potential to increase cardiometabolic risk across the life course. In the United States (US) the burden of childhood obesity is highest among Hispanic/Latinos, in particular children or adolescents of Mexican descent. Although the genetic epidemiology of childhood obesity has been studied previously, the potential for novel childhood obesity loci in Hispanic/Latinos and the generalizability of previously reported loci to Hispanic/Latino children and adolescents are still unknown. Thus we aimed to conduct a genome-wide association study of childhood obesity in 1,612 Hispanic/Latino children and adolescents (2-18 years) collected as part of one Mexican (n=794 Mexico City Study) and two US (n=362 Children’s Hospital of Philadelphia; n=456 Viva La Familia Study) studies, and to generalize 11 previously reported childhood obesity loci from European descent samples to our Hispanic/Latino samples. Obesity cases and controls were defined by BMI-for-age percentiles based on the Centers for Disease Control and Prevention smoothed and sex-specific growth curves from 2000, wherein cases had percentiles ≥95 th and controls had percentiles ≤85 th . Each study performed a genome-wide logistic regression analysis of single nucleotide polymorphism (SNPs) after adjusting for sex, population stratification and relatedness, as applicable. We combined study results for SNPs >10 minor allele counts and imputation quality ≥0.5 using fixed-effect inverse-variance weighted meta-analysis. A priori, we estimated that in our sample (n effective =1,498) we would have >80% power to detect common SNPs (>15% minor allele frequency) across the genome (p<5x10 -8 ) that increase the odds of childhood obesity of 55% per risk allele. Generalizability at 11 known childhood obesity loci was defined as p<0.05 and directional consistency with the previously reported obesity-increasing allele. We found 5 suggestive childhood obesity loci (p<4x10 -6 ), including a SNP that associated with an increased odds of childhood obesity of 54% per risk allele (73% frequent) at ARHGAP21, which is expressed in an enhancer region in brain, muscle and adipose tissues and has been previously implicated with trunk fat mass in Viva la Familia at another SNP (r 2 <0.08). Of the 11 known childhood obesity loci, 9 were directionally consistent (binomial p=0.03). SEC16B and TMEM18 generalized to Hispanic/Latinos (p≤0.01), corresponding to a 27% and 40% increased odds of obesity per risk allele (22-88% frequency). These preliminary results suggest the presence of novel loci for childhood obesity and the generalizability of genetic loci discovered in samples of European descent to Hispanic/Latinos, albeit with stronger effect sizes. Future work will attempt to identify additional Hispanic/Latino obesity cases and controls to replicate the suggestive associations.


Genes ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 8 ◽  
Author(s):  
Loes Loohuis ◽  
Monique Albersen ◽  
Simone de Jong ◽  
Timothy Wu ◽  
Jurjen Luykx ◽  
...  

The active form of vitamin B6, pyridoxal phosphate (PLP), is essential for human metabolism. The brain is dependent on vitamin B6 for its neurotransmitter balance. To obtain insight into the genetic determinants of vitamin B6 homeostasis, we conducted a genome-wide association study (GWAS) of the B6 vitamers pyridoxal (PL), PLP and the degradation product of vitamin B6, pyridoxic acid (PA). We collected a unique sample set of cerebrospinal fluid (CSF) and plasma from the same healthy human subjects of Dutch ancestry (n = 493) and included concentrations and ratios in and between these body fluids in our analysis. Based on a multivariate joint analysis of all B6 vitamers and their ratios, we identified a genome-wide significant association at a locus on chromosome 1 containing the ALPL (alkaline phosphatase) gene (minimal p = 7.89 × 10−10, rs1106357, minor allele frequency (MAF) = 0.46), previously associated with vitamin B6 levels in blood. Subjects homozygous for the minor allele showed a 1.4-times-higher ratio between PLP and PL in plasma, and even a 1.6-times-higher ratio between PLP and PL in CSF than subjects homozygous for the major allele. In addition, we observed a suggestive association with the CSF:plasma ratio of PLP on chromosome 15 (minimal p = 7.93 × 10−7, and MAF = 0.06 for rs28789220). Even though this finding is not reaching genome-wide significance, it highlights the potential of our experimental setup for studying transport and metabolism across the blood–CSF barrier. This GWAS of B6 vitamers identifies alkaline phosphatase as a key regulator in human vitamin B6 metabolism in CSF as well as plasma. Furthermore, our results demonstrate the potential of genetic studies of metabolites in plasma and CSF to elucidate biological aspects underlying metabolite generation, transport and degradation.


Circulation ◽  
2020 ◽  
Vol 142 (17) ◽  
pp. 1633-1646 ◽  
Author(s):  
Derek Klarin ◽  
Shefali Setia Verma ◽  
Renae Judy ◽  
Ozan Dikilitas ◽  
Brooke N. Wolford ◽  
...  

Background: Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality; however, its genetic determinants remain incompletely defined. In total, 10 previously identified risk loci explain a small fraction of AAA heritability. Methods: We performed a genome-wide association study in the Million Veteran Program testing ≈18 million DNA sequence variants with AAA (7642 cases and 172 172 controls) in veterans of European ancestry with independent replication in up to 4972 cases and 99 858 controls. We then used mendelian randomization to examine the causal effects of blood pressure on AAA. We examined the association of AAA risk variants with aneurysms in the lower extremity, cerebral, and iliac arterial beds, and derived a genome-wide polygenic risk score (PRS) to identify a subset of the population at greater risk for disease. Results: Through a genome-wide association study, we identified 14 novel loci, bringing the total number of known significant AAA loci to 24. In our mendelian randomization analysis, we demonstrate that a genetic increase of 10 mm Hg in diastolic blood pressure (odds ratio, 1.43 [95% CI, 1.24–1.66]; P =1.6×10 −6 ), as opposed to systolic blood pressure (odds ratio, 1.06 [95% CI, 0.97–1.15]; P =0.2), likely has a causal relationship with AAA development. We observed that 19 of 24 AAA risk variants associate with aneurysms in at least 1 other vascular territory. A 29-variant PRS was strongly associated with AAA (odds ratio PRS , 1.26 [95% CI, 1.18–1.36]; P PRS =2.7×10 −11 per SD increase in PRS), independent of family history and smoking risk factors (odds ratio PRS+family history+smoking , 1.24 [95% CI, 1.14–1.35]; P PRS =1.27×10 −6 ). Using this PRS, we identified a subset of the population with AAA prevalence greater than that observed in screening trials informing current guidelines. Conclusions: We identify novel AAA genetic associations with therapeutic implications and identify a subset of the population at significantly increased genetic risk of AAA independent of family history. Our data suggest that extending current screening guidelines to include testing to identify those with high polygenic AAA risk, once the cost of genotyping becomes comparable with that of screening ultrasound, would significantly increase the yield of current screening at reasonable cost.


2017 ◽  
Author(s):  
Ditte Demontis ◽  
Veera Manikandan Rajagopal ◽  
Thomas D. Als ◽  
Jakob Grove ◽  
Jonatan Pallesen ◽  
...  

Introductory paragraphCannabis is the most frequently used illicit psychoactive substance worldwide1. Life time use has been reported among 35-40% of adults in Denmark2 and the United States3. Cannabis use is increasing in the population4–6 and among users around 9% become dependent7. The genetic risk component is high with heritability estimates of 518–70%9. Here we report the first genome-wide significant risk locus for cannabis use disorder (CUD, P=9.31×10−12) that replicates in an independent population (Preplication=3.27×10−3, Pmetaanalysis=9.09×10−12). The finding is based on a genome-wide association study (GWAS) of 2,387 cases and 48,985 controls followed by replication in 5,501 cases and 301,041 controls. The index SNP (rs56372821) is a strong eQTL for CHRNA2 and analyses of the genetic regulated gene expressions identified significant association of CHRNA2 expression in cerebellum with CUD. This indicates a potential therapeutic use in CUD of compounds with agonistic effect on the neuronal acetylcholine receptor alpha-2 subunit encoded by CHRNA2. At the polygenic level analyses revealed a significant decrease in the risk of CUD with increased load of variants associated with cognitive performance.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiazhong Guo ◽  
Rui Jiang ◽  
Ayi Mao ◽  
George E. Liu ◽  
Siyuan Zhan ◽  
...  

Abstract Background There is a long-term interest in investigating the genetic basis of the horned/polled phenotype in domestic goats. Here, we report a genome-wide association study (GWAS) to detect the genetic loci affecting the polled phenotype in goats. Results We obtained a total of 13,980,209 biallelic SNPs, using the genotyping-by-sequencing data from 45 Jintang Black (JT) goats, which included 32 female and nine male goats, and four individuals with the polled intersex syndrome (PIS). Using a mixed-model based GWAS, we identified two association signals, which were located at 150,334,857–150,817,260 bp (P = 5.15 × 10− 119) and 128,286,704–131,306,537 bp (P = 2.74 × 10− 15) on chromosome 1. The genotype distributions of the 14 most significantly associated SNPs were completely correlated with horn status in goats, based on the whole-genome sequencing (WGS) data from JT and two other Chinese horned breeds. However, variant annotation suggested that none of the detected SNPs within the associated regions were plausible causal mutations. Via additional read-depth analyses and visual inspections of WGS data, we found a 10.1-kb deletion (CHI1:g. 129424781_129434939del) and a 480-kb duplication (CHI1:150,334,286–150,818,098 bp) encompassing two genes KCNJ15 and ERG in the associated regions of polled and PIS-affected goats. Notably, the 10.1-kb deletion also served as the insertion site for the 480-kb duplication, as validated by PCR and Sanger sequencing. Our WGS genotyping showed that all horned goats were homozygous for the reference alleles without either the structural variants (SVs), whereas the PIS-affected goats were homozygous for both the SVs. We also demonstrated that horned, polled, and PIS-affected individuals among 333 goats from JT and three other Chinese horned breeds can be accurately classified via PCR amplification and agarose gel electrophoresis of two fragments in both SVs. Conclusion Our results revealed that two genomic regions on chromosome 1 are major loci affecting the polled phenotypes in goats. We provided a diagnostic PCR to accurately classify horned, polled, and PIS-affected goats, which will enable a reliable genetic test for the early-in-life prediction of horn status in goats.


2018 ◽  
Author(s):  
Jessica van Setten ◽  
Jennifer A. Brody ◽  
Yalda Jamshidi ◽  
Brenton R. Swenson ◽  
Anne M. Butler ◽  
...  

ABSTRACTElectrocardiographic PR interval measures atrial and atrioventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. We performed a genome-wide association study in over 92,000 individuals of European descent and identified 44 loci associated with PR interval (34 novel). Examination of the 44 loci revealed known and novel biological processes involved in cardiac atrial electrical activity, and genes in these loci were highly over-represented in several cardiac disease processes. Nearly half of the 61 independent index variants in the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with one or more missense variants. Cardiac regulatory regions of the genome as measured by cardiac DNA hypersensitivity sites were enriched for variants associated with PR interval, compared to non-cardiac regulatory regions. Joint analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation identified additional new pleiotropic loci. The majority of associations discovered in European-descent populations were also present in African-American populations. Meta-analysis examining over 105,000 individuals of African and European descent identified additional novel PR loci. These additional analyses identified another 13 novel loci. Together, these findings underscore the power of GWAS to extend knowledge of the molecular underpinnings of clinical processes.


Blood ◽  
2011 ◽  
Vol 117 (25) ◽  
pp. 6906-6911 ◽  
Author(s):  
Dong Hwan (Dennis) Kim ◽  
Seung-Tae Lee ◽  
Hong-Hee Won ◽  
Seonwoo Kim ◽  
Min-Ji Kim ◽  
...  

Abstract In the current study, we identified 2 genetic markers for susceptibility to chronic myeloid leukemia (CML) using a genome-wide analysis. A total of 2744 subjects (671 cases and 2073 controls) were included, with 202 Korean CML patients and 497 control subjects enrolled as a discovery set. Significant findings in the discovery set were validated in a second Korean set of 237 patients and 1000 control subjects and in an additional Canadian cohort of European descent, including 232 patients and 576 control subjects. Analysis revealed significant associations of 2 candidate loci, 6q25.1 and 17p11.1, with CML susceptibility, with the lowest combined P values of 2.4 × 10−6 and 1.3 × 10−12, respectively. Candidate genes in those regions include RMND1, AKAP12, ZBTB2, and WSB1. The locus 6q25.1 was validated in both Korean and European cohorts, whereas 17p11.1 was validated only in the Korean cohort. These findings suggest that genetic variants of 6q25.1 and 17p11.1 may predispose one to the development of CML.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ya-Ching Chou ◽  
Ming-Jer Chen ◽  
Pi-Hua Chen ◽  
Ching-Wen Chang ◽  
Mu-Hsien Yu ◽  
...  

AbstractTo determine whether genetic predisposition to endometriosis varies depending on ethnicity and in association with expression quantitative trait loci (eQTL) in a Taiwanese population. We conducted a genome-wide association study (GWAS) and replicated it in 259 individuals with laparoscopy-confirmed stage III or IV endometriosis (cases) and 171 women without endometriosis (controls). Their genomic DNA was extracted from blood and evaluated by the GWAS of Taiwan Biobank Array. Novel genetic variants that predispose individuals to endometriosis were identified using GWAS and replication, including rs10739199 (P = 6.75 × 10−5) and rs2025392 (P = 8.01 × 10−5) at chromosome 9, rs1998998 (P = 6.5 × 10−6) at chromosome 14, and rs6576560 (P = 9.7 × 10−6) at chromosome 15. After imputation, strong signals were exhibited by rs10822312 (P = 1.80 × 10−7) at chromosome 10, rs58991632 (P = 1.92 × 10−6) and rs2273422 (P = 2.42 × 10−6) at chromosome 20, and rs12566078 (P = 2.5 × 10−6) at chromosome 1. We used the Genotype-Tissue Expression (GTEx) database to observe eQTL. Among these SNPs, the cis-eQTL rs13126673 of inturned planar cell polarity protein (INTU) showed significant association with INTU expression (P = 5.1 × 10–33). Moreover, the eQTL analysis was performed on endometriotic tissues from women with endometriosis. The expression of INTU in 78 endometriotic tissue of women with endometriosis is associated with rs13126673 genotype (P = 0.034). To our knowledge, this is the first GWAS to link endometriosis and eQTL in a Taiwanese population.


2020 ◽  
Author(s):  
Ken Batai ◽  
Mario J Trejo ◽  
Yuliang Chen ◽  
Lindsay N Kohler ◽  
Peter Lance ◽  
...  

ABSTRACT Background Selenium (Se) is a trace element that has been linked to many health conditions. Genome-wide association studies (GWAS) have identified variants for blood and toenail Se levels, but no GWAS has been conducted to date on responses to Se supplementation. Objectives A GWAS was performed to identify the single nucleotide polymorphisms (SNPs) associated with changes in Se concentrations after 1 year of supplementation. A GWAS of basal plasma Se concentrations at study entry was conducted to evaluate whether SNPs for Se responses overlap with SNPs for basal Se levels. Methods A total of 428 participants aged 40–80 years of European descent from the Selenium and Celecoxib Trial (Sel/Cel Trial) who received daily supplementation with 200 µg of selenized yeast were included for the GWAS of responses to supplementation. Plasma Se concentrations were measured from blood samples collected at the time of recruitment and after 1 year of supplementation. Linear regression analyses were performed to assess the relationship between each SNP and changes in Se concentrations. We further examined whether the identified SNPs overlapped with those related to basal Se concentrations. Results No SNP was significantly associated with changes in Se concentration at a genome-wide significance level. However, rs56856693, located upstream of the NEK6, was nominally associated with changes in Se concentrations after supplementation (P = 4.41 × 10−7), as were 2 additional SNPs, rs11960388 and rs6887869, located in the dimethylglycine dehydrogenase (DMGDH)/betaine-homocysteine S-methyltransferase (BHMT) region (P = 0.01). Alleles of 2 SNPs in the DMGDH/BHMT region associated with greater increases in Se concentrations after supplementation were also strongly associated with higher basal Se concentrations (P = 8.67 × 10−8). Conclusions This first GWAS of responses to Se supplementation in participants of European descent from the Sel/Cel Trial suggests that SNPs in the NEK6 and DMGDH/BHMT regions influence responses to supplementation.


Sign in / Sign up

Export Citation Format

Share Document