scholarly journals Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes

Author(s):  
Jonas Peper ◽  
Daniel Kownatzki-Danger ◽  
Gunnar Weninger ◽  
Fitzwilliam Seibertz ◽  
Julius Ryan Pronto ◽  
...  

Rationale: Caveolin3 variants associated with arrhythmogenic cardiomyopathy and muscular dystrophy can disrupt post-Golgi surface trafficking. As Caveolin1 was recently identified in cardiomyocytes, we hypothesize that conserved isoform-specific protein/protein interactions orchestrate unique cardiomyocyte microdomain functions. To analyze the Caveolin1 versus Caveolin3 interactome, we employed unbiased live-cell proximity proteomic, isoform-specific affinity, and complexome profiling mass spectrometry techniques. We demonstrate the physiological relevance and loss-of-function mechanism of a novel Caveolin3 interactor in gene-edited human iPSC-cardiomyocytes. Objective: To identify differential Caveolin1 versus Caveolin3 protein interactions and to define the molecular basis of cardiac CAV3 loss-of-function. Methods and Results: Combining stable isotope labeling with proximity proteomics, we applied mass spectrometry to screen for putative Caveolin3 interactors in living cardiomyocytes. Isoform-specific affinity proteomic and co-immunoprecipitation experiments confirmed the monocarboxylate transporter McT1 versus aquaporin1, respectively, as Caveolin3 or Caveolin1 specific interactors in cardiomyocytes. Superresolution STED microscopy showed distinct Caveolin1 versus Caveolin3 cluster distributions in cardiomyocyte transverse tubules. CRISPR/Cas9-mediated Caveolin3 knock-out uncovered a stabilizing role for McT1 surface expression, proton-coupled lactate shuttling, increased late Na+ currents, and early afterdepolarizations in human iPSC-derived cardiomyocytes. Complexome profiling confirmed that McT1 and the Na,K-ATPase form labile protein assemblies with the multimeric Caveolin3 complex. Conclusions: Combining the strengths of proximity and affinity proteomics, we identified isoform-specific Caveolin1 versus Caveolin3 binding partners in cardiomyocytes. McT1 represents a novel class of metabolically relevant Caveolin3-specific interactors close to mitochondria in cardiomyocyte transverse tubules. Caveolin3 knock-out uncovered a previously unknown role for functional stabilization of McT1 in the surface membrane of human cardiomyocytes. Strikingly, Caveolin3 deficient cardiomyocytes exhibit action potential prolongation and instability, reproducing human reentry arrhythmias in silico. Given that lactate is a major substrate for stress adaption both in the healthy and the diseased human heart, future studies of conserved McT1/Caveolin3 interactions may provide rationales to target this muscle-specific assembly function therapeutically.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Stefan Kalkhof ◽  
Stefan Schildbach ◽  
Conny Blumert ◽  
Friedemann Horn ◽  
Martin von Bergen ◽  
...  

The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6.


2016 ◽  
Vol 27 (5) ◽  
pp. 744-756 ◽  
Author(s):  
Yuki Niwa ◽  
Takehiro Suzuki ◽  
Naoshi Dohmae ◽  
Siro Simizu

R-spondin1 (Rspo1) is a secreted protein that enhances Wnt signaling, which has crucial functions in embryonic development and several cancers. C-mannosylation is a rare type of glycosylation and might regulate secretion, protein–protein interactions, and enzymatic activity. Although human Rspo1 contains 2 predicted C-mannosylation sites, C-mannosylation of Rspo1 has not been reported, nor have its functional effects on this protein. In this study, we demonstrate by mass spectrometry that Rspo1 is C-mannosylated at W153 and W156. Using Lec15.2 cells, which lack dolichol-phosphate-mannose synthesis activity, and mutant Rspo1-expressing cells that replace W153 and W156 by alanine residues, we observed that C-mannosylation of Rspo1 is required for its secretion. Further, the enhancement of canonical Wnt signaling by Rspo1 is regulated by C-mannosylation. Recently DPY19 was reported to be a C-mannosyltransferase in Caenorhabditis elegans, but no C-mannosyltransferases have been identified in any other organism. In gain- and loss-of-function experiments, human DPY19L3 selectively modified Rspo1 at W156 but not W153 based on mass spectrometry. Moreover, knockdown of DPY19L3 inhibited the secretion of Rspo1. In conclusion, we identified DPY19L3 as the C-mannosyltransferase of Rspo1 at W156 and found that DPY19L3-mediated C-mannosylation of Rspo1 at W156 is required for its secretion.


2021 ◽  
Author(s):  
Zheyi Liu ◽  
Wenxiang Zhang ◽  
Binwen Sun ◽  
Yaolu Ma ◽  
Min He ◽  
...  

A mass spectrometry-based two-step isotope labeling-lysine reactivity profiling strategy is developed to probe the molecular details of protein–protein interactions and evaluate the conformational interventions by small-molecule active compounds.


2012 ◽  
Vol 11 (11) ◽  
pp. 1442-1456 ◽  
Author(s):  
Anne Frohn ◽  
H. Christian Eberl ◽  
Julia Stöhr ◽  
Elke Glasmacher ◽  
Sabine Rüdel ◽  
...  

Argonaute (Ago) proteins interact with small regulatory RNAs such as microRNAs (miRNAs) and facilitate gene-silencing processes. miRNAs guide Ago proteins to specific mRNAs leading to translational silencing or mRNA decay. In order to understand the mechanistic details of miRNA function, it is important to characterize Ago protein interactors. Although several proteomic studies have been performed, it is not clear how the Ago interactome changes on miRNA or mRNA binding. Here, we report the analysis of Ago protein interactions in miRNA-containing and miRNA-depleted cells. Using stable isotope labeling in cell culture in conjunction with Dicer knock out mouse embryonic fibroblasts, we identify proteins that interact with Ago2 in the presence or the absence of Dicer. In contrast to our current view, we find that Ago-mRNA interactions can also take place in the absence of miRNAs. Our proteomics approach provides a rich resource for further functional studies on the cellular roles of Ago proteins.


2019 ◽  
Vol 26 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Natalie K. Garcia ◽  
Galahad Deperalta ◽  
Aaron T. Wecksler

Background: Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. Conclusion: Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miaomiao Liu ◽  
Wesley C. Van Voorhis ◽  
Ronald J. Quinn

AbstractA key step in the development of new pharmaceutical drugs is the identification of the molecular target and distinguishing this from all other gene products that respond indirectly to the drug. Target identification remains a crucial process and a current bottleneck for advancing hits through the discovery pipeline. Here we report a method, that takes advantage of the specific detection of protein–ligand complexes by native mass spectrometry (MS) to probe the protein partner of a ligand in an untargeted method. The key advantage is that it uses unmodified small molecules for binding and, thereby, it does not require labelled ligands and is not limited by the chemistry required to tag the molecule. We demonstrate the use of native MS to identify known ligand–protein interactions in a protein mixture under various experimental conditions. A protein–ligand complex was successfully detected between parthenolide and thioredoxin (PfTrx) in a five-protein mixture, as well as when parthenolide was mixed in a bacterial cell lysate spiked with PfTrx. We provide preliminary data that native MS could be used to identify binding targets for any small molecule.


Sign in / Sign up

Export Citation Format

Share Document