Dissociation of Direct and Indirect Effects of Angiotensin II on the Heart

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 683-684
Author(s):  
Jorge P van Kats ◽  
David W Silversides ◽  
Timothy L Reudelhuber

33 Cardiac angiotensin II (Ang II), either derived from the circulation or locally synthesized, is often suggested to be involved in the structural adaptations occurring in the heart in hypertension and following myocardial infarction. However, it is debated whether the proven beneficial effects of renin-angiotensin system blockade in these pathologies are related to an inhibition of the direct cardiac actions of the peptide. The objective of the present study was to investigate which of the effects of cardiac Ang II are due to direct stimulation of cardiac cells by Ang II. To test for cardiac specific functions of Ang II, transgenic mice were developed that express an Ang II-releasing fusion protein (J Biol Chem 1997;272:12994-99) exclusively in cardiomyocytes. Blood pressure, heart rate, cardiac and plasma Ang II content, Ang II receptor binding and organ morphology were monitored in transgenic (TG) and non-transgenic littermate mice (control). Cardiac Ang II levels in TG mice were 20-40 fold higher than in hearts of control mice (15±3 pg/100 mg ww). In 3 independent founder lines of TG mice, plasma Ang II concentration was not altered as compared to control (119±20 vs. 127±20 pg/mL). The heart weight to body weight ratio in TG mice (4.0±0.1 mg/g) was not different from controls (3.8±0.1 mg/g), neither was systolic pressure (137±4 and 138±7 mm Hg respectively) or heart rate (618±13 and 662±15 bpm respectively). Microscopic inspection of TG hearts did not reveal any differences with control regarding size and number of cardiomyocytes and organization of extracellular matrix proteins. TG mice had not become less sensitive for Ang II signaling since Ang II receptor number was not altered in TG mice (Bmax = 23±3 fmol/mg protein) as compared to control (22±2 fmol/mg protein). Our data show that very high Ang II levels in hearts of TG mice do not lead to myocardial enlargement or affect cardiovascular physiology. We conclude that elevated Ang II in the heart has no direct effects on cardiac cells and we hypothesize that effects of cardiac Ang II become apparent upon altered hemodynamic loading.

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Clemens Duerrschmid ◽  
Fernando Aguirre-Amezquite ◽  
George E Taffet ◽  
Mark L Entman ◽  
Sandra B Haudek

Background: Infusion of angiotensin-II (Ang-II) to wild-type (WT) mice results in hypertension, development of interstitial cardiac fibrosis and hypertrophy, and deterioration of myocardial function. We previously showed that after 1 week of Ang-II infusion, these effects were absent in mice deficient in tumor necrosis factor receptor 1 (TNFR1). We now investigated long-term effects of Ang-II infusion. Methods: WT and TNFR1-KO mice were infused with Ang-II for 6 weeks. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography; cardiac function by 2D-echocardiography and Doppler ultrasound. Hearts were analyzed for collagen deposition (histology) and expression of fibrosis- and hypertrophy- related genes (quantitative PCR). Results: In WT mice, SBP increased within 7 days and remained elevated at 6 weeks (152±4 mmHg); cardiac fibrosis developed after 1 week and persisted at 6 weeks (6.2±1.1% collagen area). By contrast, in TNFR1-KO mice, SBP at 7 days was low, but increased by 6 weeks (144±4 mmHg), whereas cardiac fibrosis was absent at 1 week and did not significantly increase by 6 weeks (2.5±0.5%). In support of these data, collagen I and collagen III mRNA expression at 6 weeks were upregulated in WT (2.9±0.6 and 4.1±0.8 -fold over sham), but not in TNFR1-KO hearts (1.3±0.1 and 1.8±0.2). In both mouse groups, cardiac hypertrophy and cardiac dysfunction developed over time, however, these changes were less prominent in TNFR1-KO mice: at 6 weeks, the heart-weight to body-weight ratio in WT was 6.7±0.4, in TNFR1-KO mice 5.5±0.2; the changes in anterior and posterior wall thicknesses in WT were 44±12% and 32±15%, in TNFR1-KO mice 19±8% and 17±10%; the change in ejection fraction in WT was -67±12%, in TNFR1-KO mice -39±5%; and the change in Tei-index (myocardial performance) in WT was 18±9%, in TNFR1-KO -1±7%. Also, hypertrophy-related atrial natriuretic peptide (ANP) and beta-myosin heavy chain (b-MHC) mRNA were upregulated in WT (4.3±0.9 and 4.3±0.6 -fold over sham), but less in TNFR1-KO hearts (2.6±0.5 and 2.4±0.5). Conclusion: Despite a significant increase in blood pressure over 6 weeks of Ang-II infusion, TNFR1-KO mice developed less cardiac fibrosis and hypertrophy and had better cardiac function compared to WT mice.


1990 ◽  
Vol 258 (4) ◽  
pp. R852-R859 ◽  
Author(s):  
K. C. Tomlinson ◽  
S. M. Gardiner ◽  
T. Bennett

The diabetogenic agent streptozotocin (STZ) was injected intraperitoneally in Long-Evans and arginine vasopressin (AVP)-deficient Brattleboro rats. Twenty-eight days later both strains had a bradycardia and systolic hypotension; STZ-treated Brattleboro rats also had diastolic hypotension. The vasopressin (V1-receptor) antagonist, d(CH2)5[Tyr(Et)]DAVP, had no effect on resting blood pressure (BP) or heart rate (HR) in either strain of rat, indicating the relative maintenance of diastolic BP in STZ-treated Long-Evans rats was not dependent on acute vascular actions of AVP. Captopril caused a modest hypotension in all groups of rats, indicating that BP was not differentially dependent on the renin-angiotensin system in the different groups. In the presence of captopril and the ganglion blocker, pentolinium tartrate, the AVP-mediated recovery in BP was impaired in STZ-treated Long-Evans rats. During administration of d(CH2)5[Tyr(Et)]DAVP and pentolinium, the angiotensin II (ANG II)-mediated BP recovery was smaller in both groups of STZ-treated rats, indicating that this abnormality was not likely to be caused by inhibition of renin release by AVP. The abnormalities in ANG II- and AVP-mediated recovery were prevented by insulin treatment.


1990 ◽  
Vol 259 (2) ◽  
pp. H610-H618 ◽  
Author(s):  
K. M. Baker ◽  
J. F. Aceto

The octapeptide [Ile5]angiotensin II (ANG II), which is the principal circulating hormone of the renin-angiotensin system, could modulate or mediate cardiac hypertrophy via indirect effects, through increases in total peripheral vascular resistance, or by direct effects on cardiac cells, which result in increased protein synthesis and cell growth. In this study we determined whether ANG II stimulated protein synthesis and cell growth in cultures of embryonic chick myocytes. After 3 h of exposure to ANG II, there were significant increases in total cellular protein at 120, 144, and 168 h and in the relative rate of protein synthesis at 120 and 144 h. There was a significant increase in the fractional rate of protein synthesis of 32.2% (0.0119 +/- 0.0008 h-1 for ANG II stimulated and 0.0090 +/- 0.0003 h-1 for control). The stimulatory effects of ANG II on protein synthesis and cell growth were inhibited by the ANG II antagonist [Sar1,Ile8]ANG II and the hexapeptide ANG II-(3-8). ANG II significantly increased total RNA levels in myocytes, at 12 h after exposure to the peptide. The stimulatory effect of ANG II (32%) on total cellular protein was slightly greater than that seen with norepinephrine (20%) in contrast to the greater stimulatory effect seen with phorbol 12,13-dibutyrate (47%). ANG II and [Sar1,Ile8]ANG II each stimulated increases in cytosolic-free Ca2+, whereas ANG II-(3-8) did not. Growth-related effects of changes in the chronotropic state of the myocytes were excluded, in that, ANG II-stimulated increases in protein synthesis and cellular protein were not inhibited by potassium chloride depolarization of the cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 270 (5) ◽  
pp. R1092-R1098 ◽  
Author(s):  
D. A. Fitts ◽  
R. L. Thunhorst

A role for the renal renin-angiotensin system in the direct stimulation of salt appetite in the rat remains controversial because attempts to elicit the behavior by intravenous administration of angiotensin II (ANG II) have been unconvincing. We recently demonstrated that depletion-induced salt appetite was attenuated by selective blockade of peripheral ANG II synthesis with an intravenous dose of converting enzyme inhibitor [captopril (Cap)] that does not block the synthesis of ANG II inside the blood brain barrier. We now show that intravenous ANG II at 30 ng/min rapidly reestablishes salt appetite in Cap-blocked rats. The mean arterial blood pressure (MAP) of unblocked, sodium-depleted rats was normal, but Cap-blocked, depleted rats had low MAP. An intravenous infusion of ANG II in Cap-blocked rats brought MAP into the normal range and elicited water and salt drinking within 90 min. Phenylephrine also normalized MAP but failed to elicit fluid intake in Cap-blocked, sodium-deficient rats. Sodium and water balances tended to be more positive during ANG II than during phenylephrine infusions. Thus circulating ANG II may stimulate both thirst and salt appetite by a direct action on the brain and not by causing natriuresis or by raising the blood pressure.


1994 ◽  
Vol 266 (6) ◽  
pp. H2468-H2475 ◽  
Author(s):  
H. A. Rockman ◽  
S. P. Wachhorst ◽  
L. Mao ◽  
J. Ross

There is increasing evidence that the renin-angiotensin system may play a important role in cardiac hypertrophy. To assess the role of angiotensin II in the induction of cardiac hypertrophy, three groups of adult mice were subjected to left ventricular pressure overload by transverse aortic constriction (TAC). For the next 7 days the groups received either the specific angiotensin II subtype 1 receptor (AT1) antagonist (losartan, 1.05 g/l; n = 17), an angiotensin enzyme inhibitor (captopril, 2 g/l; n = 17), or no treatment (n = 22) administered in the drinking water and compared with three similarly treated sham-operated groups (n = 7 each). TAC resulted in a significant increase in heart weight-to-body weight ratio (0.634 +/- 0.087 vs. 0.525 +/- 0.039, g/g x 100, P < 0.05), which was prevented by losartan (0.506 +/- 0.069, g/g x 100, P < 0.0001) despite similar hemodynamic load (proximal systolic pressure 146 +/- 31 vs. 136 +/- 32 mmHg, untreated vs. losartan, P = NS). Proximal systolic pressure was positively correlated with the development of ventricular hypertrophy. In the presence of AT1-receptor blockade, the increase in heart weight-to-body weight ratio at any given systolic pressure was significantly attenuated compared with untreated TAC mice. The increase in heart weight-to-body weight ratio was also significantly attenuated by captopril compared with untreated banded controls (0.542 +/- 0.091, g/g x 100, P = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Madhu V Singh ◽  
Michael Z Cicha ◽  
Mark W Chapleau ◽  
François M Abboud

We have reported that angiotensin II (Ang II) induces toll-like receptors (TLRs) in the innate immune system. Here we tested which of the two major adaptor proteins of TLRs, the myeloid differentiation protein 88 (MyD88) or the TIR-domain containing adaptor inducing interferon β (TRIF) mediates the Ang II-induced responses. Infusion of Ang II (3000 ng/kg/min) subcutaneously for 3 weeks in WT mice (C57BL/6J) increased systolic blood pressure to a peak value of 147 ± 4 mm Hg and resulted in a 40% increase in heart weight to body weight ratio (HW/BW). Surprisingly, in MyD88-/- mice the pressor response was enhanced significantly to 163 ± 6 mm Hg (P<0.05) and the HW/BW was increased by 60%. Cardiac and renal RNA expression of TNF-α, NOX4 and Type IA -Ang II receptor were also significantly more elevated in MyD88-/- than in WT. In contrast, in a mouse strain with nonfunctional TRIF gene, Trifmut (C57BL/6J-Ticam1Lps2/J), all the Ang II responses were either uniformly decreased or abrogated. We tested whether the enhanced response in MyD88-/- mice represented a phenomenon of ‘Signaling Flux Redistribution” whereby blockade of one signaling pathway (i.e., MyD88) results in a flux of signaling substrates through the alternative pathway (TRIF). We found that expression of the RNA for chemokine CXCL10 which is dependent on TRIF pathway, was significantly enhanced in MyD88-/- hearts. We also found that expression of transcripts for TLR3, TLR4 and the TRIF adaptor protein were all enhanced in MyD88-/- and must have contributed to the exaggerated Ang II response. Conversely, Trifmut had enhanced MyD88 expression. These results suggest that: (1) Ang II induced hypertension, hypertrophy and inflammatory gene expression are primarily mediated by the TRIF pathway and (2) the MyD88 pathway is simultaneously activated by Ang II and exerts a negative regulatory influence on the pressor and inflammatory responses. We conclude that dual activation of two innate immune pathways defines the net response in WT mice with a significant translational potential. Accordingly, impairment of MyD88 may contribute to pathogenesis of hypertension. Conversely, targeting the TRIF pathway may be therapeutic by blocking the inflammatory response and enhancing the negative regulatory effects of MyD88.


2021 ◽  
pp. 352-371
Author(s):  
Sukhwinder K. Bhullar ◽  
Anureet K. Shah ◽  
Naranjan S. Dhalla

The development of heart failure under various pathological conditions such as myocardial infarction (MI), hypertension and diabetes are accompanied by adverse cardiac remodeling and cardiac dysfunction. Since heart function is mainly determined by coordinated activities of different subcellular organelles including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils for regulating the intracellular concentration of Ca2+, it has been suggested that the occurrence of heart failure is a consequence of subcellular remodeling, metabolic alterations and Ca2+-handling abnormalities in cardiomyocytes. Because of the elevated plasma levels of angiotensin II (ANG II) due to activation of the renin-angiotensin system (RAS) in heart failure, we have evaluated the effectiveness of treatments with angiotensin converting enzyme (ACE) inhibitors and ANG II type 1 receptor (AT1R) antagonists in different experimental models of heart failure. Attenuation of marked alterations in subcellular activities, protein content and gene expression were associated with improvement in cardiac function in MI-induced heart failure by treatment with enalapril (an ACE inhibitor) or losartan (an AT1R antagonist). Similar beneficial effects of ANG II blockade on subcellular remodeling and cardiac performance were also observed in failing hearts due to pressure overload, volume overload or chronic diabetes. Treatments with enalapril and losartan were seen to reduce the degree of RAS activation as well as the level of oxidative stress in failing hearts. These observations provide evidence which further substantiate to support the view that activation of RAS and high level of plasma ANG II play a critical role in inducing subcellular defects and cardiac dys-function during the progression of heart failure.


2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yongjun Zhu ◽  
Hongwang Cui ◽  
Jie Lv ◽  
Haiqin Liang ◽  
Yanping Zheng ◽  
...  

AbstractAbnormal renin-angiotensin system (RAS) activation plays a critical role in the initiation and progression of chronic kidney disease (CKD) by directly mediating renal tubular cell apoptosis. Our previous study showed that necroptosis may play a more important role than apoptosis in mediating renal tubular cell loss in chronic renal injury rats, but the mechanism involved remains unknown. Here, we investigate whether blocking the angiotensin II type 1 receptor (AT1R) and/or angiotensin II type 2 receptor (AT2R) beneficially alleviates renal tubular cell necroptosis and chronic kidney injury. In an angiotensin II (Ang II)-induced renal injury mouse model, we found that blocking AT1R and AT2R effectively mitigates Ang II-induced increases in necroptotic tubular epithelial cell percentages, necroptosis-related RIP3 and MLKL protein expression, serum creatinine and blood urea nitrogen levels, and tubular damage scores. Furthermore, inhibition of AT1R and AT2R diminishes Ang II-induced necroptosis in HK-2 cells and the AT2 agonist CGP42112A increases the percentage of necroptotic HK-2 cells. In addition, the current study also demonstrates that Losartan and PD123319 effectively mitigated the Ang II-induced increases in Fas and FasL signaling molecule expression. Importantly, disruption of FasL significantly suppressed Ang II-induced increases in necroptotic HK-2 cell percentages, and necroptosis-related proteins. These results suggest that Fas and FasL, as subsequent signaling molecules of AT1R and AT2R, might involve in Ang II-induced necroptosis. Taken together, our results suggest that Ang II-induced necroptosis of renal tubular cell might be involved both AT1R and AT2R and the subsequent expression of Fas, FasL signaling. Thus, AT1R and AT2R might function as critical mediators.


2021 ◽  
Vol 22 (6) ◽  
pp. 3145
Author(s):  
Qianhong Li ◽  
Yiru Guo ◽  
Yibing Nong ◽  
Alex Tomlin ◽  
Anna Gumpert ◽  
...  

Using a murine model of chronic ischemic cardiomyopathy caused by an old myocardial infarction (MI), we have previously found that three doses of 1 × 106 c-kit positive cardiac cells (CPCs) are more effective than a single dose of 1 × 106 cells. The goal of this study was to determine whether the beneficial effects of three doses of CPCs (1 × 106 cells each) can be fully replicated by a single combined dose of 3 × 106 CPCs. Mice underwent a 60-min coronary occlusion; after 90 days of reperfusion, they received three echo-guided intraventricular infusions at 5-week intervals: (1) vehicle × 3; (2) one combined dose of CPCs (3 × 106) and vehicle × 2; or (3) three doses of CPCs (1 × 106 each). In the combined-dose group, left ventricular ejection fraction (LVEF) improved after the 1st CPC infusion, but not after the 2nd and 3rd (vehicle) infusions. In contrast, in the multiple-dose group, LVEF increased after each CPC infusion; at the final echo, LVEF averaged 35.2 ± 0.6% (p < 0.001 vs. the vehicle group, 27.3 ± 0.2%). At the end of the study, the total cumulative change in EF from pretreatment values was numerically greater in the multiple-dose group (6.6 ± 0.6%) than in the combined-dose group (4.8 ± 0.8%), although the difference was not statistically significant (p = 0.08). Hemodynamic studies showed that several parameters of LV function in the multiple-dose group were numerically greater than in the combined-dose group (p = 0.08 for the difference in LVEF). Compared with vehicle, cardiomyocyte cross-sectional area was reduced only in the multiple-dose group (−32.7%, 182.6 ± 15.1 µm2 vs. 271.5 ± 27.2 µm2, p < 0.05, in the risk region and −28.5%, 148.5 ± 12.1 µm2 vs. 207.6 ± 20.5 µm2, p < 0.05, in the noninfarcted region). LV weight/body weight ratio and LV weight/tibia length ratios were significantly reduced in both cell treated groups vs. the vehicle group, indicating the attenuation of LV hypertrophy; however, the lung weight/body weight ratio was significantly reduced only in the multiple-dose group, suggesting decreased pulmonary congestion. Taken together, these results indicate that in mice with chronic ischemic cardiomyopathy, the beneficial effects of three doses of CPCs on LV function and hypertrophy cannot be fully replicated with a single dose, notwithstanding the fact that the total number of cells delivered with one or three doses is the same. Thus, it is the multiplicity of doses, and not the total number of cells, that accounts for the superiority of the repeated-dose paradigm. This study supports the idea that the efficacy of cell therapy in heart failure can be augmented by repeated administrations.


Sign in / Sign up

Export Citation Format

Share Document