Abstract 300: Oral Administration of Lentil Extracts Attenuated Angiotensin Ii-induced Cardiac Hypertrophy and Hypertension in Normotensive Rats

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Chengluan Xuan ◽  
Fanrong Yao ◽  
Lirong Guo ◽  
Sam Chang ◽  
Kexiang Liu ◽  
...  

The objective of this study is to examine the effects of extracts from raw and cooked lentil on angiotensin II (Ang II)-induced cardiac hypertrophy, fibrosis, and hypertension in normotensive rats. Subcutaneous infusion of Ang II (200 ng/kg/min) using osmotic minipump significantly resulted in the elevation of blood pressure measured using telemetry in conscious rats. Histological examination revealed that Ang II infusion for 4 weeks induced significant cardiac hypertrophy, perivascular fibrosis in the heart and kidney. Rats received lentil extracts (oral administration for 4 weeks) significantly attenuated Ang II-induced elevation in blood pressure, cardiac hypertrophy, perivascular fibrosis. To examine whether the protective effect of lentil extracts on cardiac hypertrophy is mediated by attenuation of blood pressure or directly act on the cardiomyocytes, we examined the effect of lentil extracts on Ang II-induced hypertrophy in cultured cardiomyocytes. The result demonstrated that pretreatment of cardiomyocytes with cooked or raw lentil extract significantly attenuated the Ang II-induced increases in the size of cells. In addition, these lentil extracts also attenuated Ang II-induced increases in the ROS levels in cardiomyocytes. In summary, the results demonstrate that extracts from cooked or raw lentil prevent Ang II-induced elevation in blood pressure, perivascular fibrosis, and cardiac hypertrophy. The cardiac protective effect on Ang II-induced cardiac hypertrophy may be mediated by a direct action in cardiac tissue via reduction of oxidative stress.

2019 ◽  
Vol 317 (2) ◽  
pp. F254-F263
Author(s):  
Anne D. Thuesen ◽  
Stine H. Finsen ◽  
Louise L. Rasmussen ◽  
Ditte C. Andersen ◽  
Boye L. Jensen ◽  
...  

T-type Ca2+ channel Cav3.1 promotes microvessel contraction ex vivo. It was hypothesized that in vivo, functional deletion of Cav3.1, but not Cav3.2, protects mice against angiotensin II (ANG II)-induced hypertension. Mean arterial blood pressure (MAP) and heart rate were measured continuously with chronically indwelling catheters during infusion of ANG II (30 ng·kg−1·min−1, 7 days) in wild-type (WT), Cav3.1−/−, and Cav3.2−/− mice. Plasma aldosterone and renin concentrations were measured by radioimmunoassays. In a separate series, WT mice were infused with ANG II (100 ng·kg−1·min−1) with and without the mineralocorticoid receptor blocker canrenoate. Cav3.1−/− and Cav3.2−/− mice exhibited no baseline difference in MAP compared with WT mice, but day-night variation was blunted in both Cav3.1 and Cav3.2−/− mice. ANG II increased significantly MAP in WT, Cav3.1−/−, and Cav3.2−/− mice with no differences between genotypes. Heart rate was significantly lower in Cav3.1−/− and Cav3.2−/− mice compared with control mice. After ANG II infusion, plasma aldosterone concentration was significantly lower in Cav3.1−/− compared with Cav3.2−/− mice. In response to ANG II, fibrosis was observed in heart sections from both WT and Cav3.1−/− mice and while cardiac atrial natriuretic peptide mRNA was similar, the brain natriuretic peptide mRNA increase was mitigated in Cav3.1−/− mice ANG II at 100 ng/kg yielded elevated pressure and an increased heart weight-to-body weight ratio in WT mice. Cardiac hypertrophy, but not hypertension, was prevented by the mineralocorticoid receptor blocker canrenoate. In conclusion, T-type channels Cav3.1and Cav3.2 do not contribute to baseline blood pressure levels and ANG II-induced hypertension. Cav3.1, but not Cav3.2, contributes to aldosterone secretion. Aldosterone promotes cardiac hypertrophy during hypertension.


2017 ◽  
Vol 312 (5) ◽  
pp. H980-H991 ◽  
Author(s):  
Lirong Guo ◽  
Ankang Yin ◽  
Qi Zhang ◽  
Tiecheng Zhong ◽  
Stephen T. O’Rourke ◽  
...  

The objectives of the present study were to investigate the effect of ANG-(1–7) on the development of cardiac hypertrophy and to identify the intracellular mechanism underlying this action of ANG-(1–7). Blood pressure and heart rate were recorded using radiotelemetry before and after chronic subcutaneous infusion of control (PBS), ANG II, ANG-(1–7), or ANG II + ANG-(1–7) for 4 wk in normotensive rats. Chronic administration of ANG-(1–7) did not affect either basal blood pressure or the ANG II-induced elevation in blood pressure. However, ANG-(1–7) significantly attenuated ANG II-induced cardiac hypertrophy and perivascular fibrosis in these rats. These effects of ANG-(1–7) were confirmed in cultured cardiomyocytes, in which ANG-(1–7) significantly attenuated ANG II-induced increases in cell size. This protective effect of ANG-(1–7) was significantly attenuated by pretreatment with A779 (a Mas receptor antagonist) or Mito-TEMPO (a mitochondria-targeting superoxide scavenger) as well as blockade of Sirt3 (a deacetylation-acting protein) by viral vector-mediated overexpression of sirtuin (Sirt)3 short hairpin (sh)RNA. Western blot analysis demonstrated that treatment with ANG-(1–7) dramatically increased Sirt3 expression. In addition, ANG-(1–7) attenuated the ANG II-induced increase in mitochondrial ROS generation, an effect that was abolished by A779 or Sirt3 shRNA. Moreover, ANG-(1–7) increased FoxO3a deacetylation and SOD2 expression, and these effects were blocked by Sirt3 shRNA. In summary, the protective effects of ANG-(1–7) on ANG II-induced cardiac hypertrophy and increased mitochondrial ROS production are mediated by elevated SOD2 expression via stimulation of Sirt3-dependent deacetylation of FoxO3a in cardiomyocytes. Thus, activation of the ANG-(1–7)/Sirt3 signaling pathway could be a novel therapeutic strategy in the management of cardiac hypertrophy and associated complications. NEW & NOTEWORTHY Chronic subcutaneous ANG-(1–7) has no effect on ANG II-induced elevations in blood pressure but significantly attenuates ANG II-induced cardiac hypertrophy and fibrosis by a mitochondrial ROS-dependent mechanism. This protective effect of ANG-(1–7) against the action of ANG II action is mediated by stimulation of sirtuin-3-mediated deacetylation of FoxO3a, which triggers SOD2 expression.


1996 ◽  
Vol 270 (5) ◽  
pp. R1092-R1098 ◽  
Author(s):  
D. A. Fitts ◽  
R. L. Thunhorst

A role for the renal renin-angiotensin system in the direct stimulation of salt appetite in the rat remains controversial because attempts to elicit the behavior by intravenous administration of angiotensin II (ANG II) have been unconvincing. We recently demonstrated that depletion-induced salt appetite was attenuated by selective blockade of peripheral ANG II synthesis with an intravenous dose of converting enzyme inhibitor [captopril (Cap)] that does not block the synthesis of ANG II inside the blood brain barrier. We now show that intravenous ANG II at 30 ng/min rapidly reestablishes salt appetite in Cap-blocked rats. The mean arterial blood pressure (MAP) of unblocked, sodium-depleted rats was normal, but Cap-blocked, depleted rats had low MAP. An intravenous infusion of ANG II in Cap-blocked rats brought MAP into the normal range and elicited water and salt drinking within 90 min. Phenylephrine also normalized MAP but failed to elicit fluid intake in Cap-blocked, sodium-deficient rats. Sodium and water balances tended to be more positive during ANG II than during phenylephrine infusions. Thus circulating ANG II may stimulate both thirst and salt appetite by a direct action on the brain and not by causing natriuresis or by raising the blood pressure.


2007 ◽  
Vol 292 (2) ◽  
pp. H736-H742 ◽  
Author(s):  
Justin L. Grobe ◽  
Adam P. Mecca ◽  
Melissa Lingis ◽  
Vinayak Shenoy ◽  
Tonya A. Bolton ◽  
...  

Cardiac remodeling, which typically results from chronic hypertension or following an acute myocardial infarction, is a major risk factor for the development of heart failure and, ultimately, death. The renin-angiotensin system (RAS) has previously been established to play an important role in the progression of cardiac remodeling, and inhibition of a hyperactive RAS provides protection from cardiac remodeling and subsequent heart failure. Our previous studies have demonstrated that overexpression of angiotensin-converting enzyme 2 (ACE2) prevents cardiac remodeling and hypertrophy during chronic infusion of angiotensin II (ANG II). This, coupled with the knowledge that ACE2 is a key enzyme in the formation of ANG-(1–7), led us to hypothesize that chronic infusion of ANG-(1–7) would prevent cardiac remodeling induced by chronic infusion of ANG II. Infusion of ANG II into adult Sprague-Dawley rats resulted in significantly increased blood pressure, myocyte hypertrophy, and midmyocardial interstitial fibrosis. Coinfusion of ANG-(1–7) resulted in significant attenuations of myocyte hypertrophy and interstitial fibrosis, without significant effects on blood pressure. In a subgroup of animals also administered [d-Ala7]-ANG-(1–7) (A779), an antagonist to the reported receptor for ANG-(1–7), there was a tendency to attenuate the antiremodeling effects of ANG-(1–7). Chronic infusion of ANG II, with or without coinfusion of ANG-(1–7), had no effect on ANG II type 1 or type 2 receptor binding in cardiac tissue. Together, these findings indicate an antiremodeling role for ANG-(1–7) in cardiac tissue, which is not mediated through modulation of blood pressure or altered cardiac angiotensin receptor populations and may be at least partially mediated through an ANG-(1–7) receptor.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Stefan Chmielewski ◽  
Cristiane Aoqui ◽  
Hans Bluijssen ◽  
Marcus Baumann

Background: Inflammation participates importantly in hypertensive organ damage. Angiotensin II (Ang II) plays a crucial role in hypertension and induces inflammation. An essential mediator of inflammation is the transcription factor STAT1 which is activated by interferon but also by Ang II. We hypothesized that activation of STAT1 during Ang II infusion upregulates chemokines, enhances chemotaxis and consequently results in heart fibrosis and vessel dysfunction independent on blood pressure and hypertrophy Methods: C57BL/6, C57BL/6 receiving candesartan (5mg/kg) and STAT1-/- mice received infusion of Ang II 1.5 μg/g/day or placebo for 4 weeks (n=9/group). Blood pressure was measured using tail cuff pletysmography. Expression of chemokines Cxcl10, Cxcl9 and MCP-1 as well as Nos2 were investigated. Small mesenteric arteries (SMA) were mounted in a wire myograph to assess their function. Cardiac hypertrophy and inflammation (CD45 staining) and fibrosis (hydroxyproline assay) were determined. Results: Ang II caused expression of IFNg in C57BL/6 and STAT1-/- in vitro and in vivo. Blood pressure and cardiac hypertrophy did not differ between angiotensin treated C57BL/6 and STAT1-/- mice. Ang II increased in C57BL/6 expression of STAT1 dependent genes of chemokines and Nos2 (Cxcl10: 4.8-fold, Cxcl9: 3.4-fold, MCP-1: 6.6-fold, Nos2: 2.6-fold; all P<0.05) whereas this remained abolished in STAT1-/- mice. Ang II lead in STAT1-/- mice as compared to C57BL/6 to decreased cardiac CD45 number/view (C57BL/6-AngII: 27±4 STAT1-/--AngII: 11±5; P<0.05) and reduced cardiac fibrosis (hydroxyproline assay: C57BL/6-AngII: 80.6±11.8μmol/l versus STAT1-/- -AngII: 55.0±8.4μmol/l; P<0.05). Mesenteric arteries of STAT1-/- mice were fully protected against angiotensin induced endothelial dysfunction. Candesartan (AT1 receptor antagonist) inhibited action of Ang II in C57BL/6 and reduced but not reversed expression of chemokines in the heart. Conclusions: Lack of STAT1 revealed protection against Ang II-induced cardiac fibrosis and endothelial dysfunction. We suggest that STAT1-induced chemokine activation induces chemotaxis into hypertensive target organs and modifies cardiac fibrosis and vascular dysfunction in a blood pressure-independent manner.


2015 ◽  
Vol 308 (10) ◽  
pp. C803-C812 ◽  
Author(s):  
Colin N. Young ◽  
Anfei Li ◽  
Frederick N. Dong ◽  
Julie A. Horwath ◽  
Catharine G. Clark ◽  
...  

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


Author(s):  
Yuanping Cao ◽  
Qun Wang ◽  
Caiyun Liu ◽  
Wenjun Wang ◽  
Songqing Lai ◽  
...  

Abstract Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice, and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signaling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun, and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signaling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


1981 ◽  
Vol 241 (3) ◽  
pp. H381-H388 ◽  
Author(s):  
A. J. Brown ◽  
J. Casals-Stenzel ◽  
S. Gofford ◽  
A. F. Lever ◽  
J. J. Morton

Female Wistar rats were infused intravenously with 5% dextrose for 3 days, then with angiotensin II (ANG II) in 5% dextrose at 20 ng . kg-1 . min-1 for 7 days, and finally with dextrose for 2.5 days. ANG II raised mean arterial pressure (MAP) gradually; by the 7th day it was 49.7 mmHg higher than during the dextrose control period in the same rats. Control rats were infused with dextrose for 12.5 days; MAP did not change. Plasma ANG II concentration was measured during infusion. In hypertensive rats on the 7th day of ANG II infusion, it was six times higher than in control rats infused with dextrose. Changes of blood pressure and plasma ANG II concentration were compared in further rats infused with much larger doses of ANG II. Rats receiving 270 ng . kg-1 . min-1 for 1 h had an almost maximal direct pressor response, MAP rising 45.3 mmHg and plasma ANG II rising 32-fold compared with controls. Thus, infusion of ANG II at low dose without direct pressor effect gradually raises blood pressure to a level similar to the maximum direct pressor effect produced by larger doses of ANG II. Sodium balance and food and water intakes were also measured and did not change during prolonged infusion of ANG II at 20 ng . kg-1 . min-1. Thus, the slow pressure effect of ANG II develops at a lower and more nearly physiological plasma concentration of the peptide than do the direct pressor effect and the effects on drinking, eating, and urinary sodium excretion.


Sign in / Sign up

Export Citation Format

Share Document