Capn4 aggravates angiotensin II-induced cardiac hypertrophy by activating the IGF-AKT signaling pathway

Author(s):  
Yuanping Cao ◽  
Qun Wang ◽  
Caiyun Liu ◽  
Wenjun Wang ◽  
Songqing Lai ◽  
...  

Abstract Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice, and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signaling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun, and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signaling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.

2018 ◽  
Vol 132 (6) ◽  
pp. 685-699 ◽  
Author(s):  
Zhen-Guo Ma ◽  
Xin Zhang ◽  
Yu-Pei Yuan ◽  
Ya-Ge Jin ◽  
Ning Li ◽  
...  

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro. In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro. Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro. More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


2018 ◽  
Vol 51 (2) ◽  
pp. 827-841 ◽  
Author(s):  
Xiaofang Wang ◽  
Yuan Liu ◽  
Lili Xiao ◽  
Ling Li ◽  
Xiaoyan Zhao ◽  
...  

Background/Aims: Cardiac hypertrophy is a major predisposing factor for heart failure and sudden cardiac death. Hyperoside (Hyp), a flavonoid isolated from Rhododendron ponticum L., is a primary component of Chinese traditional patent medicines. Numerous studies have shown that Hyp exerts marked anti-viral, anti-inflammatory, anti-oxidant, anti-cancer, anti-ischemic, and particularly cardio-protective effects. However, the effects of Hyp on cardiac hypertrophy have not been explored. The aims of this study were to determine whether Hyp could protect against cardiac remodeling and to clarify the potential molecular mechanisms. Methods: Neonatal rat cardiac myocytes were isolated and treated with different concentrations of Hyp, then cultured with angiotensin II for 48 h. Mice were subjected to either aortic banding or sham surgery (control group). One week after surgery, the mice were treated with Hyp (20 mg/kg/day) or vehicle by oral gavage for 7 weeks. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histology, and biomarkers. Results: Hyp pretreatment suppressed angiotensin II-induced hypertrophy in cardiomyocytes. Hyp exerted no basal effects but attenuated cardiac hypertrophy and dysfunction, fibrosis, inflammation, and oxidative stress induced by pressure overload. Both in vivo and in vitro experiments demonstrated that the effect of Hyp on cardiac hypertrophy was mediated by blocking activation of the AKT signaling pathway. Conclusion: Hyp improves cardiac function and prevents the development of cardiac hypertrophy via AKT signaling. Our results suggest a protective effect of Hyp on pressure overload-induced cardiac remodeling. Taken together, Hyp may have a role in the pharmacological therapy of cardiac hypertrophy.


2017 ◽  
Vol 41 (5) ◽  
pp. 2004-2015 ◽  
Author(s):  
Zeng-xiang Dong ◽  
Lin Wan ◽  
Ren-jun Wang ◽  
Yuan-qi Shi ◽  
Guang-zhong Liu ◽  
...  

Background/Aims: Flavonol (–)-epicatechin (EPI) is present in high amounts in cocoa and tea products, and has been shown to exert beneficial effects on the cardiovascular system. However, the precise mechanism of EPI on cardiomyocyte hypertrophy has not yet been determined. In this study, we examined whether EPI could inhibit cardiac hypertrophy. Methods: We utilised cultured neonatal mouse cardiomyocytes and mice for immunofluorescence, immunochemistry, qRT-PCR, and western blot analyses. Results: 1µM EPI significantly inhibited 1µM angiotensin II (Ang II)-induced increase of cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC in vitro. The effects of EPI were accompanied with an up-regulation of SP1 and SIRT1, and were abolished by SP1 inhibition. Up-regulation of SP1 could block Ang II-induced increase in cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC, and increase the protein levels of SIRT1 in vitro. Moreover, 1 mg/kg body weight/day EPI significantly inhibited mouse cardiac hypertrophy induced by Ang II, which could be eliminated by SP1 inhibition in vivo. Conclusion: Our data indicated that EPI inhibited AngII-induced cardiac hypertrophy by activating the SP1/SIRT1 signaling pathway.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Haiyu Li ◽  
Xiaoxu Tian ◽  
Yongjuan Ruan ◽  
Junhui Xing ◽  
Zhe Meng

Abstract Background Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Studies have demonstrated that microRNA-126 (miR-126) was involved in angiogenesis during physiological and pathological process. However, its role in cardiac hypertrophy has not been known clearly. Our previous study demonstrated that asiatic acid (AA) has obvious protective effect on cardiac hypertrophy. Here, this study aimed to discover the regulatory role of miR-126 and its mechanism in cardiac hypertrophy, and to determine whether AA’s anti-hypertrophy effect is partially miR-126 dependent. Methods Male Sprague Dawley rats were AngII infused via osmotic minipumps for 4 weeks and were treated with AA (20 mg/kg/day) by oral gavage. Cardiac hypertrophy was assessed using the echocardiography and histological analysis. In vitro studies,cardiomyocyte and cardiac fibroblasts (CF) were treted with AngII and AngII plus AA. And, the effect of AA on miR-126 and PI3K/AKT signaling pathway was investigated. Results Treatment of rats with AA decreased the ratio of heart weight to tibia length and hypertrophy markers. In vitro exprements demonstrated that AA significantly attenuated AngII-induced cardiac growth and cardiac fibroblast collagen expression. Moreover, our results found downregulation of miR-126 and activation of PI3K/AKT signaling pathway in AngII infusion induced cardiac hypertrophy model. It was also determined that miR-126 targets PIK3R2 directly. Conclusions AA supplementation upregulated the expression of miR-126 and conferred cardio-protection effect against AngII induced cardiac hypertrophy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karina Cañón-Beltrán ◽  
Yulia N. Cajas ◽  
Serafín Peréz-Cerezales ◽  
Claudia L. V. Leal ◽  
Ekaitz Agirregoitia ◽  
...  

AbstractIn vitro culture can alter the development and quality of bovine embryos. Therefore, we aimed to evaluate whether nobiletin supplementation during EGA improves embryonic development and blastocyst quality and if it affects PI3K/AKT signaling pathway. In vitro zygotes were cultured in SOF + 5% FCS (Control) or supplemented with 5, 10 or 25 µM nobiletin (Nob5, Nob10, Nob25) or with 0.03% dimethyl-sulfoxide (CDMSO) during minor (2 to 8-cell stage; MNEGA) or major (8 to 16-cell stage; MJEGA) EGA phase. Blastocyst yield on Day 8 was higher in Nob5 (42.7 ± 1.0%) and Nob10 (44.4 ± 1.3%) for MNEGA phase and in Nob10 (61.0 ± 0.8%) for MJEGA phase compared to other groups. Mitochondrial activity was higher and lipid content was reduced in blastocysts produced with nobiletin, irrespective of EGA phase. The mRNA abundance of CDK2, H3-3B, H3-3A, GPX1, NFE2L2 and PPARα transcripts was increased in 8-cells, 16-cells and blastocysts from nobiletin groups. Immunofluorescence analysis revealed immunoreactive proteins for p-AKT forms (Thr308 and Ser473) in bovine blastocysts produced with nobiletin. In conclusion, nobiletin supplementation during EGA has a positive effect on preimplantation bovine embryonic development in vitro and corroborates on the quality improvement of the produced blastocysts which could be modulated by the activation of AKT signaling pathway.


2019 ◽  
Vol 10 (2) ◽  
pp. 592-601 ◽  
Author(s):  
Xiang Li ◽  
Ze-sheng Zhang ◽  
Xiao-han Zhang ◽  
Sheng-nan Yang ◽  
Dong Liu ◽  
...  

Anthocyanins have been shown to exhibit antitumor activity in several cancersin vitroandin vivo.


Sign in / Sign up

Export Citation Format

Share Document