Abstract 095: CD74 Deficient Mice are Resistant to Toll-Like Receptor-Induced Preeclampsia

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Mohamad Hatahet ◽  
Olga Y Gasheva ◽  
Valorie L Chiasson ◽  
Piyali Chatterjee ◽  
Kelsey R Bounds ◽  
...  

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by vascular endothelial dysfunction and excessive immunity and inflammation. Activation of the dsRNA receptor Toll-like receptor 3 (TLR3) or the ssRNA receptor TLR7 elicits a pregnancy-dependent PE-like syndrome in mice by inducing a pro-inflammatory immune response. CD74 (MHC Class II invariant chain) acts as a chaperone for MHC Class II surface expression on immune cells during antigen presentation and is cleaved into Class II-Associated Invariant Peptide (CLIP) following polyclonal activation of immune cell TLRs. The presence of CLIP in the groove of MHC Class II prevents T cell-dependent death leading to persistent immune cell activation. We hypothesized that genetic deletion of CD74 and subsequent depletion of CLIP on immune cells prevents TLR-induced immune responses and the development of PE in mice. Pregnant WT and CD74 KO mice were given i.p. injections of normal saline (P), poly I:C (TLR3 agonist; P-PIC), or R837 (TLR7 agonist; P-R837) on gestational days 13, 15, and 17 and euthanized on day 18. P-PIC and P-R837 WT mice had significantly increased splenic levels of pro-inflammatory CD3+/gd T cells and plasma levels of the gd T cell-derived cytokines IFNg, TNFa, and IL-17 compared to P WT mice whereas P-PIC and P-R837 CD74 KO mice had significantly increased anti-inflammatory CD3+/gd T cells and no significant increases in plasma IFNg, TNFa, and IL-17 levels. P-PIC and P-R837 CD74 KO mice did not develop the hypertension (gd17 SBP in mmHg: P WT=102±3, P CD74 KO=100±3, P-PIC WT=147±4*, P-PIC CD74 KO=95±3, P-R837 WT=133±2*, P-R837 CD74 KO=97±1; *p<0.05 vs. P WT), endothelial dysfunction, proteinuria, or placental necrosis seen in P-PIC and P-R837 WT mice. In conclusion, CD74 is crucial for the development of TLR-induced PE-like symptoms in mice and CD74/CLIP depletion may be a promising therapeutic target for women with PE.

1995 ◽  
Vol 182 (6) ◽  
pp. 1751-1757 ◽  
Author(s):  
S Sanderson ◽  
D J Campbell ◽  
N Shastri

Identifying the immunogenic proteins that elicit pathogen-specific T cell responses is key to rational vaccine design. While several approaches have succeeded in identifying major histocompatibility complex (MHC) class I bound peptides that stimulate CD8+ T cells, these approaches have been difficult to extend to peptides presented by MHC class II molecules that stimulate CD4+ T cells. We describe here a novel strategy for identifying CD4+ T cell-stimulating antigen genes. Using Listeria monocytogenes-specific, lacZ-inducible T cells as single-cell probes, we screened a Listeria monocytogenes genomic library as recombinant Escherichia coli that were fed to macrophages. The antigen gene was isolated from the E. coli clone that, when ingested by the macrophages, allowed generation of the appropriate peptide/MHC class II complex and T cell activation. We show that the antigenic peptide is derived from a previously unknown listeria gene product with characteristics of a membrane-bound protein.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3325-3332 ◽  
Author(s):  
Anders Woetmann ◽  
Paola Lovato ◽  
Karsten W. Eriksen ◽  
Thorbjørn Krejsgaard ◽  
Tord Labuda ◽  
...  

AbstractBacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients. The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant T cells enhance proliferation of the malignant cells in an SE- and MHC class II–dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4+ T-cell lines also enhance proliferation of the malignant cells. The growth-promoting effect depends on direct cell-cell contact and soluble factors such as interleukin-2. In conclusion, we demonstrate that SE triggers a bidirectional cross talk between nonmalignant T cells and malignant CTCL cells that promotes growth of the malignant cells. This represents a novel mechanism by which infections with SE-producing bacteria may contribute to pathogenesis of CTCL.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


2020 ◽  
Vol 8 (2) ◽  
pp. e000605
Author(s):  
Souvik Dey ◽  
Erika Sutanto-Ward ◽  
Katharina L Kopp ◽  
James DuHadaway ◽  
Arpita Mondal ◽  
...  

BackgroundThe tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which subverts T-cell immunity at multiple levels, is itself subject to inherent T-cell reactivity. This intriguing deviation from central tolerance has been interpreted as counterbalancing IDO1-mediated immunosuppression. Based on this hypothesis, clinical studies employing an IDO1 peptide-based vaccine approach for cancer treatment have been initiated, but there remains a pressing need to further investigate the immunological ramifications of stimulating the anti-IDO1 T-cell response in this manner.MethodsCT26 colon carcinoma tumors were evaluated for expression of IDO1 protein by western blot analysis, immunofluorescence microscopy and flow cytometry. Mouse IDO1-derived peptides, predicted to bind either major histocompatibility complex (MHC) class I or II of the H2d BALB/c strain, were emulsified in 50% Montanide for prophylactic or therapeutic vaccine treatment of CT26 tumor-bearing mice initiated either 7 days prior to or following tumor cell injection, respectively. In some therapeutic treatment experiments, administration of programmed cell death protein 1-binding antibody (anti-PD1 antibody) or epacadostat was concurrently initiated. Tumor size was determined by caliper measurements and comparative tumor growth suppression was assessed by longitudinal analyses of tumor growth data. For adoptive transfer, T cells from complete responder animals were isolated using paramagnetic beads and fluorescence-activated cell sorting.ResultsThis study identifies mouse MHC class I-directed and II-directed, IDO1-derived peptides capable of eliciting antitumor responses, despite finding IDO1 expressed exclusively in tumor-infiltrating immune cells. Treatment of established tumors with anti-PD1 antibody and class I-directed but not class II-directed IDO1 peptide vaccines produced an enhanced antitumor response. Likewise, class I-directed and II-directed IDO1 peptides elicited an enhanced combinatorial response, suggesting distinct mechanisms of action. Consistent with this interpretation, adoptive transfer of isolated CD8+ T cells from class I and CD4+ T cells from class II peptide-vaccinated responder mice delayed tumor growth. The class II-directed response was completely IDO1-dependent while the class I-directed response included an IDO1-independent component consistent with antigen spread.ConclusionsThe in vivo antitumor effects demonstrated with IDO1-based vaccines via targeting of the tumor microenvironment highlight the utility of mouse models for further exploration and refinement of this novel vaccine-based approach to IDO1-directed cancer therapy and its potential to improve patient response rates to anti-PD1 therapy.


2020 ◽  
Vol 221 (11) ◽  
pp. 1895-1906
Author(s):  
Raymond M Johnson ◽  
Norma Olivares-Strank ◽  
Gang Peng

Abstract Background The T-cell response to chlamydia genital tract infections in humans and mice is unusual because the majority of antigen-specific CD8 T cells are not class I restricted (referred to here as “unrestricted” or “atypical”). We previously reported that a subset of unrestricted murine chlamydia-specific CD8 T cells had a cytokine polarization pattern that included interferon (IFN)-γ and interleukin (IL)-13. Methods In this study, we investigated the transcriptome of CD8γ13 T cells, comparing them to Tc1 clones using microarray analysis. That study revealed that CD8γ13 polarization included IL-5 in addition to IFN-γ and IL-13. Adoptive transfer studies were performed with Tc1 clones and a CD8γ13 T-cell clone to determine whether either influenced bacterial clearance or immunopathology during Chlamydia muridarum genital tract infections. Results To our surprise, an adoptively transferred CD8γ13 T-cell clone was remarkably proficient at preventing chlamydia immunopathology, whereas the multifunctional Tc1 clone did not enhance clearance or significantly alter immunopathology. Mapping studies with major histocompatibility complex (MHC) class I- and class II-deficient splenocytes showed our previously published chlamydia-specific CD8 T-cell clones are MHC class II restricted. Conclusions The MHC class II-restricted CD8 T cells may play an important role in protection from intracellular pathogens that limit class I antigen presentation or diminish CD4 T-cell numbers or impair their function.


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2089-2097 ◽  
Author(s):  
Cecilia Gidlöf ◽  
Mikael Dohlsten ◽  
Peter Lando ◽  
Terje Kalland ◽  
Christer Sundström ◽  
...  

Abstract The bacterial superantigen staphylococcal enterotoxin A (SEA) is an efficient activator of cytotoxic T cells when presented on major histocompatibility complex (MHC) class II molecules of target cells. Our previous studies showed that such SEA-directed T cells efficiently lysed chronic B-lymphocytic leukemia (B-CLL) cells. Next, we made a mutated SEA–protein A (SEAm-PA) fusion protein with more than 1,000-fold reduced binding affinity for MHC class II compared with native SEA. The fusion protein was successfully used to direct T cells to B-CLL cells coated with different B lineage–directed monoclonal antibodies (MoAbs). In this communication, we constructed a recombinant anti-CD19-Fab-SEAm fusion protein. The MHC class II binding capacity of the SEA part was drastically reduced by a D227A point mutation, whereas the T-cell activation properties were retained. The Fab part of the fusion protein displayed a binding affinity for CD19+ cells in the nanomolar range. The anti-CD19-Fab-SEAm molecule mediated effective, specific, rapid, and perforin-like T-cell lysis of B-CLL cells at low effector to target cell ratios. Normal CD19+ B cells were sensitive to lysis, whereas CD34+ progenitor cells and monocytes/macrophages were resistant. A panel of CD19+ B-cell lines representing different B-cell developmental stages were efficiently lysed, and the sensitivity correlated with surface ICAM-1 expression. The anti-CD19-Fab-SEAm fusion protein mediated highly effective killing of tumor biopsy cells representing several types of B-cell non-Hodgkin's lymphoma (B-NHL). Humanized severe combined immune deficiency (SCID) mice carrying Daudi lymphoma cells were used as an in vivo therapy model for evaluation of the anti-CD19-Fab-SEAm fusion protein. Greater than 90% reduction in tumor weight was recorded in anti-CD19-Fab-SEAm–treated animals compared with control animals receiving an irrelevant Fab-SEAm fusion protein. The present results indicate that MoAb-targeted superantigens (SAgs) may represent a promising approach for T-cell–based therapy of CD19+ B-cell malignancies.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guohe Song ◽  
Yang Shi ◽  
Meiying Zhang ◽  
Shyamal Goswami ◽  
Saifullah Afridi ◽  
...  

AbstractDiverse immune cells in the tumor microenvironment form a complex ecosystem, but our knowledge of their heterogeneity and dynamics within hepatocellular carcinoma (HCC) still remains limited. To assess the plasticity and phenotypes of immune cells within HBV/HCV-related HCC microenvironment at single-cell level, we performed single-cell RNA sequencing on 41,698 immune cells from seven pairs of HBV/HCV-related HCC tumors and non-tumor liver tissues. We combined bio-informatic analyses, flow cytometry, and multiplex immunohistochemistry to assess the heterogeneity of different immune cell subsets in functional characteristics, transcriptional regulation, phenotypic switching, and interactions. We identified 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes with unique transcriptomic profiles in HCC. A highly complex immunological network was shaped by diverse immune cell subsets that can transit among different states and mutually interact. Notably, we identified a subset of M2 macrophage with high expression of CCL18 and transcription factor CREM that was enriched in advanced HCC patients, and potentially participated in tumor progression. We also detected a new subset of activated CD8+ T cells highly expressing XCL1 that correlated with better patient survival rates. Meanwhile, distinct transcriptomic signatures, cytotoxic phenotypes, and evolution trajectory of effector CD8+ T cells from early-stage to advanced HCC were also identified. Our study provides insight into the immune microenvironment in HBV/HCV-related HCC and highlights novel macrophage and T-cell subsets that could be further exploited in future immunotherapy.


1992 ◽  
Vol 176 (5) ◽  
pp. 1465-1469 ◽  
Author(s):  
C H Chang ◽  
W L Fodor ◽  
R A Flavell

Terminally differentiated plasma cells and mouse T cells do not express major histocompatibility complex (MHC) class II genes although class II gene expression is observed in pre-B and mature B cells as well as in activated human T cells. Transient heterokaryons were prepared and analyzed to investigate the mechanisms of inactivation of MHC class II gene in mouse plasmacytoma cells and mouse T cells. The endogenous MHC class II genes in both mouse plasmacytoma cells and mouse T cells can be reactivated by factors present in B cells. This reactivation of class II gene is also observed by fusion with a human T cell line which expresses MHC class II genes, but not with a class II negative human T cell line. It appears that the loss of MHC class II gene expression during the terminal differentiation of B cells or T cell lineage is due to absence of positive regulatory factor(s) necessary for class II transcription.


2004 ◽  
Vol 34 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Tamara Krajina ◽  
Frank Leithäuser ◽  
Jörg Reimann
Keyword(s):  
T Cells ◽  
T Cell ◽  
Class Ii ◽  

Sign in / Sign up

Export Citation Format

Share Document