Inhibition of HDACs (Histone Deacetylases) Ameliorates High-Fat Diet–Induced Hypertension Through Restoration of the MsrA (Methionine Sulfoxide Reductase A)/Hydrogen Sulfide Axis

Author(s):  
Jin Ki Jung ◽  
Ga-Eun Yoon ◽  
GiBong Jang ◽  
Kwon Moo Park ◽  
InKyeom Kim ◽  
...  

Hydrogen sulfide (H 2 S) is an endogenous gaseous antioxidant and antihypertensive molecule produced during the homocysteine metabolism. MsrA (methionine sulfoxide reductase A) enables the metabolism of homocysteine by reducing methionine sulfoxide to methionine. Although HDAC (histone deacetylase) inhibition has been reported to show blood pressure lowering effects, their effects on endogenous H 2 S production are largely unknown. Here, we assessed the relevance of MsrA in high-fat diet (HFD)-induced hypertension and the effect of HDAC inhibition on MsrA expression, H 2 S production, and hypertension. Male C57BL/6 mice were fed a normal diet or HFD. HFD increased blood pressure and activities of HDAC3 and 6 but downregulated MsrA in the mesenteric arteries and the serum H 2 S level. HFD upregulated 4 hydroxynonenal, TNF (tumor necrosis factor)-α, and IL (interleukin)-6, and vasocontractile proteins. The histone H3 acetylation of the MsrA promoter was decreased by HFD. In hypertensive HFD-fed mice, administration of the HDAC inhibitor CG200745 lowered blood pressure and increased serum H 2 S level. CG200745 increased acetylation of histone H3 and MsrA levels in the mesenteric arteries while downregulating oxidative stress, inflammation, and vasocontractile proteins. Silencing of MsrA in the vascular smooth muscle cells recapitulated HFD-induced in vivo hypertensive effects. CG200745 increased the histone H3 acetylation of the MsrA promoter, MsrA expression, and H 2 S production in vascular smooth muscle cells, supporting the in vivo results. Collectively, HFD-induced downregulation of MsrA plays a pivotal role in HFD-induced hypertension by reducing H 2 S levels. MsrA expression is epigenetically regulated by HDAC inhibitors, providing HDAC inhibitors as a therapeutic option and MsrA and H 2 S as novel therapeutic targets.

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S106-S107
Author(s):  
Kevin Thyne ◽  
Yuhong Liu ◽  
Adam B Salmon

Abstract While caloric restriction (CR) provides highly robust improvements to longevity and health, dietary restriction of the essential amino acid methionine can provide similar benefits including improved metabolic function and increased longevity. Despite these similarities between CR and methionine restriction (MR), there is growing evidence to suggest they may be mediated by different mechanisms that require further elucidation. The sulfur side-chain of methionine is highly prone to oxidation, even in vivo, with redox changes of these residues potentially altering protein function and interfering with its use as a substrate. An entire family of enzymes, methionine sulfoxide reductases, have evolved in aerobic organisms to regulate the redox status of methionine. We tested the role of methionine sulfoxide reductase A (MsrA) in the physiological and metabolic benefits of MR. After three months of MR, mice lacking MsrA (MsrA KO) showed significant loss of weight, including both fat and lean mass, in comparison to wild-type mice under MR. Both MsrA KO and wild-type mice responded to MR with improvements to both glucose and insulin tolerance. However, MR MsrA KO mice showed lower HbA1c and reduced leptin compared to MR wild-type mice. Overall, our results show mice lacking MsrA have a stronger response to MR suggesting that methionine redox may play an important role in some of the mechanisms responsible for these metabolic outcomes. Further studies clarify whether MsrA could also be a potential regulator of the longevity benefits of MR.


2016 ◽  
Vol 310 (6) ◽  
pp. E388-E393 ◽  
Author(s):  
Jackob Moskovitz ◽  
Fang Du ◽  
Connor F. Bowman ◽  
Shirley S. Yan

Accumulation of oxidized proteins, and especially β-amyloid (Aβ), is thought to be one of the common causes of Alzheimer's disease (AD). The current studies determine the effect of an in vivo methionine sulfoxidation of Aβ through ablation of the methionine sulfoxide reductase A (MsrA) in a mouse model of AD, a mouse that overexpresses amyloid precursor protein (APP) and Aβ in neurons. Lack of MsrA fosters the formation of methionine sulfoxide in proteins, and thus its ablation in the AD-mouse model will increase the formation of methionine sulfoxide in Aβ. Indeed, the novel MsrA-deficient APP mice ( APP+/ MsrAKO) exhibited higher levels of soluble Aβ in brain compared with APP+ mice. Furthermore, mitochondrial respiration and the activity of cytochrome c oxidase were compromised in the APP+/ MsrAKO compared with control mice. These results suggest that lower MsrA activity modifies Aβ solubility properties and causes mitochondrial dysfunction, and augmenting its activity may be beneficial in delaying AD progression.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 155 ◽  
Author(s):  
Lindsay Bruce ◽  
Diana Singkornrat ◽  
Kelsey Wilson ◽  
William Hausman ◽  
Kelli Robbins ◽  
...  

The deleterious alteration of protein structure and function due to the oxidation of methionine residues has been studied extensively in age-associated neurodegenerative disorders such as Alzheimer’s and Parkinson’s Disease. Methionine sulfoxide reductases (MSR) have three well-characterized biological functions. The most commonly studied function is the reduction of oxidized methionine residues back into functional methionine thus, often restoring biological function to proteins. Previous studies have successfully overexpressed and silenced MSR activity in numerous model organisms correlating its activity to longevity and oxidative stress. In the present study, we have characterized in vivo effects of MSR deficiency in Drosophila. Interestingly, we found no significant phenotype in animals lacking either methionine sulfoxide reductase A (MSRA) or methionine sulfoxide reductase B (MSRB). However, Drosophila lacking any known MSR activity exhibited a prolonged larval third instar development and a shortened lifespan. These data suggest an essential role of MSR in key biological processes.


2015 ◽  
Vol 22 (1) ◽  
pp. 48-62 ◽  
Author(s):  
Alicia N. Minniti ◽  
Macarena S. Arrazola ◽  
Marcela Bravo-Zehnder ◽  
Francisca Ramos ◽  
Nibaldo C. Inestrosa ◽  
...  

2006 ◽  
Vol 281 (43) ◽  
pp. 32668-32675 ◽  
Author(s):  
Nathan Brot ◽  
Jean-François Collet ◽  
Lynnette C. Johnson ◽  
Thomas J. Jönsson ◽  
Herbert Weissbach ◽  
...  

The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the α domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologs are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this frame-work there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6Å crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules, including TlpA, CcmG, and ResA. Subtle differences are observed in this loop when compared with the Neisseria meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.


2021 ◽  
Vol 78 (7) ◽  
pp. 3673-3689
Author(s):  
David Leitsch ◽  
Alvie Loufouma Mbouaka ◽  
Martina Köhsler ◽  
Norbert Müller ◽  
Julia Walochnik

AbstractThe free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii’s response to oxidative stress. The role of the large TrxR, however, remains elusive.


2008 ◽  
Vol 190 (17) ◽  
pp. 5806-5813 ◽  
Author(s):  
Emmanuel Denou ◽  
Raymond David Pridmore ◽  
Marco Ventura ◽  
Anne-Cécile Pittet ◽  
Marie-Camille Zwahlen ◽  
...  

ABSTRACT Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE (“antitoxin”)/pemK (“toxin”) gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5′ end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.


Sign in / Sign up

Export Citation Format

Share Document