Abstract 197: Plasminogen Is Required for Hematopoietic Stem Cell-Mediated Cardiac Repair After Myocardial Infarction

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Yanqing Gong ◽  
Ying Li ◽  
Jane Hoover-Plow

Myocardial infarction (MI) is the primary cause of death throughout the United States. Granulocyte colony-stimulating factor (G-CSF) is used to mobilize hematopoietic progenitor and stem cells (HPSC) to improve cardiac recovery after MI. However, poor-mobilization to G-CSF is observed in 25% of patients and 10-20% of healthy donors. Therefore, a better understanding of the underlying mechanisms may offer novel approaches for G-CSF-mediated therapeutics. Our previous studies have identified an essential role of Plg in HPSC mobilization from bone marrow (BM) in response to G-CSF. Here, we investigate the role of Plg in G-CSF-stimulated cardiac repair after MI. Our data show that G-CSF significantly improves cardiac repair including increasing neovascularization in the infarct area, and improving ejection fraction and LV internal diameter determined by echocardiogram in WT mice. No improvement on heart function is observed in Plg -/- mice, indicating Plg is required for G-CSF-regulated cardiac repair after MI. To investigate whether Plg regulates HPSC recruitment to the ischemic area, BM transplantation with EGFP-expressing BM cells was performed to visualize BM-derived stem cells in infarcted tissue. Our data show that G-CSF dramatically increases recruitment of GFP + cKit + cells (by 12 fold) in WT mice but not in Plg -/- mice. In addition, BM stem cell-derived vessels and arteries are infrequent in Plg -/- mice suggesting that Plg enhances cardiac repair by promoting stem cell recruitment to the lesion. In further studies, we investigated the role of Plg in the regulation of SDF-1/CXCR-4 axis, a major regulator for HPSC recruitment. Our results show that G-CSF significantly increases CXCR-4 expression in the infarcted area in WT mice. While G-CSF-induced CXCR-4 expression is markedly decreased (80%) in Plg -/- mice, suggesting Plg may regulate CXCR-4 expression during HSPC recruitment to injured heart. Interestingly, Plg does not affect SDF-1 expression in response to G-CSF treatment. Taken together, our findings have identified a critical role of Plg in HSPC recruitment to the lesion site and subsequent tissue repair after MI. Thus, targeting Plg may offer a new therapeutic strategy to improve G-CSF-mediated cardiac repair after MI.

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Yanqing Gong ◽  
Jane Hoover-Plow ◽  
Ying Li

Ischemic heart disease, including myocardial infarction (MI), is the primary cause of death throughout the US. Granulocyte colony-stimulating factor (G-CSF) is used to mobilize hematopoietic progenitor and stem cells (HPSC) to improve cardiac recovery after MI. However, poor-mobilization to G-CSF is observed in 25% of patients and 10-20% of healthy donors. Therefore, a better understanding of the underlying mechanisms regulating G-CSF-induced cardiac repair may offer novel approaches for strengthening stem cell-mediated therapeutics. Our previous studies have identified an essential role of Plg in HPSC mobilization from bone marrow (BM) in response to G-CSF. Here, we investigate the role of Plg in G-CSF-stimulated cardiac repair after MI. Our data show that G-CSF significantly improves cardiac tissue repair including increasing neovascularization in the infarct area, and improving ejection fraction and LV internal diameter by echocardiogram in wild-type mice. No improvement in tissue repair and heart function by G-CSF is observed in Plg -/- mice, indicating that Plg is required for G-CSF-regulated cardiac repair after MI. To investigate whether Plg regulates HPSC recruitment to ischemia area, bone marrow transplantion (BMT) with EGFP-expressing BM cells was performed to visualize BM-derived stem cells in infarcted tissue. Our data show that G-CSF dramatically increases recruitment of GFP+ cells (by 16 fold) in WT mice but not in Plg -/- mice, suggesting that Plg is essential for HPSC recruitment from BM to the lesion sites after MI. In further studies, we investigated the role of Plg in the regulation of SDF-1/CXCR-4 axis, a major regulator for HPSC recruitment. Our results show that G-CSF significantly increases CXCR-4 expression in infarcted area in WT mice. While G-CSF-induced CXCR-4 expression is markedly decreased (80%) in Plg -/- mice, suggesting Plg may regulate CXCR-4 expression during HSPC recruitment to injured heart. Interestingly, Plg does not affect SDF-1 expression in response to G-CSF treatment. Taken together, our findings have identified a critical role of Plg in HSPC recruitment to the lesion site and subsequent tissue repair after MI. Thus, targeting Plg may offer a new therapeutic strategy to improve G-CSF-mediated cardiac repair after MI.


2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Meerim Park ◽  
Jong Jin Seo

The selection of hematopoietic stem cell transplantation (HSCT) donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA) match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR) genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.


2017 ◽  
Vol 2 (s4) ◽  
pp. 45-47
Author(s):  
Cezara-Iuliana Tudor ◽  
Erzsébet Lázár ◽  
Marius-Vasile Găzdac ◽  
Annamária Pakucs ◽  
Eszter Mild ◽  
...  

AbstractStem cells are undifferentiated cells that can divide and become differentiated. Hematopoietic stem cells cannot transform into new stem cells such as cardiomyocytes or new heart valves, but they act through paracrine effects, by secreting cytokines and growth factors that lead to an increase in contractility and overall improved function. In this case report, we present how autologous stem cell transplantation can bring two major benefits: the first refers to hematological malignancy and the second is about the improvement of the heart condition. We present the case of a 60-year-old patient diagnosed with multiple myeloma suffering from a bi-valve severe condition in which autologous stem cell transplantation led to the remission of the patient’s malignant disease and also improved the heart function.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 91-91
Author(s):  
Yuichi Hirata ◽  
Kazuhiro Furuhashi ◽  
Hiroshi Ishi ◽  
Hao-Wei Li ◽  
Sandra Pinho ◽  
...  

Abstract A crucial player in immune regulation, FoxP3+ regulatory T cells (Tregs) are drawing attention for their heterogeneity and noncanonical functions. For example, specific subsets of Tregs in the adipose tissue control metabolic indices; muscle Tregs potentiate muscle repair, and lung Tregs prevent tissue damage. These studies, together with a previous finding that Tregs are enriched in the primary site for hematopoiesis, the bone marrow (BM), prompted us to examine whether there is a special Treg population which controls hematopoietic stem cells (HSCs). We showed that HSCs within the BM were frequently adjacent to distinctly activated FoxP3+ Tregs which highly expressed an HSC marker, CD150. Moreover, specific reduction of BM Tregs achieved by conditional deletion of CXCR4in Tregs, increased reactive oxygen species (ROSs) in HSCs. The reduction of BM Tregs further induced loss of HSC quiescence and increased HSC numbers in a manner inhibited by anti-oxidant treatment. Additionally, this increase in HSC numbers in mice lacking BM Tregs was reversed by transfer of CD150high BM Tregs but not of CD150low BM Tregs. These results indicate that CD150high niche-associated Tregs maintain HSC quiescence and pool size by preventing oxidative stress. We next sought to identify an effector molecule of niche Tregs which regulates HSCs. Among molecules highly expressed by niche Tregs, we focused on CD39 and CD73, cell surface ecto-enzymes which are required for generation of extracellular adenosine, because 1) CD39highCD73high cells within the BM were prevalent among CD150high Tregs and 2) HSCs highly expressed adenosine 2a receptors (A2AR). We showed that both conditional deletion of CD39 in Tregs and in vivo A2AR antagonist treatment induced loss of HSC quiescence and increased HSC pool size in a ROS-dependent manner, which is consistent with the findings in mice lacking BM Tregs. In addition, transfer of CD150high BM Tregs but not of CD150low BM Tregs reversed the increase in HSC numbers in FoxP3cre CD39flox mice. The data indicate that niche Treg-derived adenosine regulates HSCs. We further investigated the protective role of niche Tregs and adenosine in radiation injury against HSCs. Conditional deletion of CD39 in Tregs increased radiation-induced HSC apoptosis. Conversely, transfer of as few as 15,000 CD150high BM Tregs per B6 mouse (iv; day-1) rescued lethally-irradiated (9.5Gy) mice by preventing hematopoiesis failure. These observations indicate that niche Tregs protect HSCs from radiation stress. Finally, we investigated the role of niche Tregs in allogeneic (allo-) HSC transplantation. Our previous study showed that allo-hematopoietic stem and progenitor cells but not allo-Lin+ cells persisted in the BM of non-conditioned immune-competent recipients without immune suppression in a manner reversed by systemic Treg depletion1. This observation suggests that HSCs have a limited susceptibility to immune attack, as germline and embryonic stem cells are located within immune privileged sites. Because the study employed systemic Treg depletion and non-conditioned recipients, it remains unknown whether niche Tregs play a critical role in immune privilege of HSCs and in allo-HSC engraftment following conditioning. We showed here that the reduction of BM Tregs and conditional deletion of CD39 in Tregs abrogated allo-HSC persistence in non-conditioned immune-competent mice as well as allo-HSC engraftment following nonmyeloablative conditioning. Furthermore, transfer of CD150high BM Tregs but not of other Tregs (15,000 cells/recipient; day -2) significantly improved allo-HSC engraftment. This effect of niche Treg transfer is noteworthy given that 1-5 million Tregs per mouse were required in case of transfer of spleen or lymph node Tregs. These observations suggest that niche Tregs maintain immune privilege of HSCs and promote allo-HSC engraftment. In summary, our studies identify a unique niche-associated Treg subset and adenosine as regulators of HSC quiescence, numbers, stress response, engraftment, and immune privilege, further highlighting potential clinical utility of niche Treg transfer in radiation-induced hematopoiesis failure and in allo-HSC engraftment (under revision in Cell Stem Cell). 1 Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature474, 216-219, doi:10.1038/nature10160 (2011). Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (17) ◽  
pp. 6247
Author(s):  
Yongsheng Ruan ◽  
Hye Na Kim ◽  
Heather Ogana ◽  
Yong-Mi Kim

Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.


2020 ◽  
Vol 21 (19) ◽  
pp. 7301 ◽  
Author(s):  
Kamila Raziyeva ◽  
Aiganym Smagulova ◽  
Yevgeniy Kim ◽  
Saltanat Smagul ◽  
Ayan Nurkesh ◽  
...  

Ischemic heart disease and myocardial infarction remain leading causes of mortality worldwide. Existing myocardial infarction treatments are incapable of fully repairing and regenerating the infarcted myocardium. Stem cell transplantation therapy has demonstrated promising results in improving heart function following myocardial infarction. However, poor cell survival and low engraftment at the harsh and hostile environment at the site of infarction limit the regeneration potential of stem cells. Preconditioning with various physical and chemical factors, as well as genetic modification and cellular reprogramming, are strategies that could potentially optimize stem cell transplantation therapy for clinical application. In this review, we discuss the most up-to-date findings related to utilizing preconditioned stem cells for myocardial infarction treatment, focusing mainly on preconditioning with hypoxia, growth factors, drugs, and biological agents. Furthermore, genetic manipulations on stem cells, such as the overexpression of specific proteins, regulation of microRNAs, and cellular reprogramming to improve their efficiency in myocardial infarction treatment, are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document