Abstract 267: Opposing Functions of Two Splice Variants of the Human Transcription Factor Grainyhead-like 3 in Endothelial Cells And in vivo

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Joachim Altschmied ◽  
Nicole Büchner ◽  
Sascha Jakob ◽  
Sabrina Farrokh ◽  
Christine Goy ◽  
...  

Grainyhead-like 3 (GRHL3) is a member of the evolutionary conserved Grainyhead family of transcription factors. In humans, three isoforms are derived from differential first exon usage and alternative splicing, which differ only in their N-terminus. Isoform 2, the only variant also present in mouse, is required for endothelial cell (EC) migration and protects against apoptosis. The functions of the human specific isoforms 1 and 3, which are derived from an alternatively spliced pre-mRNA, have not yet been investigated, although all three isoforms are expressed in EC. Therefore, we have assessed their effects on EC migration and apoptosis. Overexpression of the two proteins had opposite effects on EC migration, with isoform 1 acting pro-migratory. This protein also protected EC against apoptosis in an eNOS-dependent manner, whereas isoform 3 had no effect. These opposing outcomes with respect to apoptosis EC were corroborated by isoform-specific knockdowns. With reporter assays using a GRHL3-specific luciferase reporter we demonstrated that both are active transcription factors. Microarray analyses revealed that they induce divergent target gene sets in EC. Two validated targets, Akt2 and Mxi1, which are upregulated by isoform1, are regulators of Akt1-, and thus eNOS-phosphorylation and apoptosis, which could explain the effects of this protein on these processes. In vivo, overexpression of isoform 3 in zebrafish embryos resulted in increased lethality and severe deformations, while isoform 1 had no deleterious effect. In conclusion, our data demonstrate that the splice variant derived isoforms 1 and 3 of the human transcription factor GRHL3 induce opposing effects in primary human endothelial cells and in a whole animal model, most likely through the induction of different target genes.

2019 ◽  
Author(s):  
Qiong Wang ◽  
Guanwen Wang ◽  
Lianjie Niu ◽  
Shaorong Zhao ◽  
Jianjun Li ◽  
...  

Abstract Abstract Background: Hepatocellular carcinoma (HCC), the most common primary liver cancer, rely on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. Methods: MiRNome sequencing was performed to uncover the miRNAs that are dysregulated in HCC patient serum-derived exosomes. Expression levels of miR-1290 in tissues and cells were determined by quantitative real-time PCR. The effect of mir-1290 on proliferation was evaluated by CCK-8 assay. The angiogenic ability of cells were determined by transwell, wound-healing, tube formation and matrigel plug assays. SMMC-7721 xenograft tumor model was established in NOD-SCID nude mice using miR-1290 and NC antagomirs to determin the angiogenic effect of mir-1290 in vivo. Target protein expression was determined by western blotting. Dual luciferase reporter assay was performed to confirm the action of miR-1290 on downstream target genes including SMEK1. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student’s t-test. Results: In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its pro-angiogenic function, at least in part, by inhibiting the VEGFR2 signaling pathway in a SMEK1-dependent manner. Conclusions: Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Arne Mlynek ◽  
Margarete Lukosz ◽  
Martin Graf ◽  
Christoph Winkler ◽  
Judith Haendeler ◽  
...  

Apoptosis and reduced migratory capacity of human endothelial cells (EC) are hallmarks for the development of atherosclerosis. TNFalpha has been described as one apoptotic stimulus, which is increased during cardiovascular disease. However, recent findings support the hypothesis that TNFalpha can induce survival genes before committing cells to apoptosis. In a screen for anti-apoptotic genes regulated by TNFalpha we have identified the transcription factor Sister-of-Mammalian Grainyhead/Grainyhead-like 3 (SOM/GRHL3). In humans two RNAs are transcribed from the gene, one of which is alternatively spliced, yielding the protein isoforms SOM1 and SOM3, the latter being an N-terminally truncated version. We have found that both isoforms are expressed in EC. Since nothing is known about the function of these proteins in EC, we investigated their functional properties and role in migration and apoptosis. To analyze their transcription factor activity we established a SOM-dependent reporter system by inserting tandem SOM binding sites and corresponding mutants upstream of a minimal promoter driving luciferase expression. To assess transcriptional activation by SOM1 and SOM3 we cotransfected these reporters with expression vectors for both proteins. In contrast to previously published work, in which isolated SOM domains fused to a Gal4 DNA binding domain were used, we found that both full length proteins are active transcription factors. We next investigated the influence of SOM1 and SOM3 on EC functions. Surprisingly, overexpression of isoform 1 induced migration and inhibited apoptosis, whereas isoform 3 had opposite effects. Along the same lines, SOM1, but not SOM3 activated endothelial nitric oxide synthase and Akt. To investigate whether these isoforms have different functions also in vivo, we overexpressed them in zebrafish embryos. SOM3 but not SOM1 overexpression led to increased lethality, a strong reduction in normal phenotype and a 10 fold higher frequency in heavy deformations. The effects observed on EC migration and apoptosis as well as on zebrafish development suggest that these isoforms activate different sets of target genes, which we are currently identifying by microarray analysis.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


2020 ◽  
Author(s):  
Qiong Wang ◽  
Guanwen Wang ◽  
Lianjie Niu ◽  
Shaorong Zhao ◽  
Jianjun Li ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC), the most common primary liver cancer, rely on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. Methods: MiRNome sequencing was performed to uncover the miRNAs that are dysregulated in HCC patient serum-derived exosomes. Expression levels of miR-1290 in tissues and cells were determined by quantitative real-time PCR. The effect of mir-1290 on proliferation was evaluated by CCK-8 assay. The angiogenic ability of cells were determined by transwell, wound-healing, tube formation and matrigel plug assays. SMMC-7721 xenograft tumor model was established in NOD-SCID nude mice using miR-1290 and NC antagomirs to determin the angiogenic effect of mir-1290 in vivo. Target protein expression was determined by western blotting. Dual luciferase reporter assay was performed to confirm the action of miR-1290 on downstream target genes including SMEK1. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student’s t-test.Results: In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its pro-angiogenic function, at least in part, by alleviating the inhibition of VEGFR2 phosphorylation done by SMEK1. Conclusions: Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


2020 ◽  
Author(s):  
Pei-Suen Tsou ◽  
Pamela J. Palisoc ◽  
Mustafa Ali ◽  
Dinesh Khanna ◽  
Amr H Sawalha

AbstractSystemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by widespread fibrosis and vascular complications. We utilized an assay for genome-wide chromatin accessibility to examine the chromatin landscape and transcription factor footprints in both endothelial cells (ECs) and fibroblasts isolated from healthy controls and patients with diffuse cutaneous (dc) SSc. In both cell types, chromatin accessibility was significantly reduced in SSc patients compared to healthy controls. Genes annotated from differentially accessible chromatin regions were enriched in pathways and gene ontologies involved in the nervous system. In addition, our data revealed that chromatin binding of transcription factors SNAI2, ETV2, and ELF1 was significantly increased in dcSSc ECs, while recruitment of RUNX1 and RUNX2 was enriched in dcSSc fibroblasts. Significant elevation of SNAI2 and ETV2 levels in dcSSc ECs, and RUNX2 levels in dcSSc fibroblasts were confirmed. Further analysis of publicly available ETV2-target genes suggests that ETV2 may play a critical role in EC dysfunction in dcSSc. Our data, for the first time, uncovered the chromatin blueprint of dcSSc ECs and fibroblasts, and suggested that neural-related characteristics of SSc ECs and fibroblasts could be a culprit for dysregulated angiogenesis and enhanced fibrosis. Targeting these pathways and the key transcription factors identified might present novel therapeutic approaches for this disease.


2018 ◽  
Author(s):  
Benjamin T. Donovan ◽  
Anh Huynh ◽  
David A. Ball ◽  
Michael G. Poirier ◽  
Daniel R. Larson ◽  
...  

SummaryTranscription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the transcription factor Gal4 with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell times sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model where multiple polymerases initiate during a burst as long as the transcription factor is bound to DNA, and a burst terminates upon transcription factor dissociation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Jessica M Salmon ◽  
Casie Leigh Reed ◽  
Maddyson Bender ◽  
Helen Lorraine Mitchell ◽  
Vanessa Fox ◽  
...  

Krüppel-like factors (KLFs) are a family of transcription factors that play essential roles in the development and differentiation of the hematopoietic system. These transcription factors possess highly conserved C-terminal zinc-finger motifs, which enable their binding to GC-rich, or CACC-box, motifs in promoter and enhancer regions of target genes. The N-terminal domains of these proteins are more varied and mediate the recruitment of various co-factors, which can form a complex with either activator or repressor function. Acting primarily as a gene repressor through its recruitment of CtBPs and histone deacetylases (HDACs) [1], we have recently shown that KLF3 competes with KLF1 bound sites in the genome to repress gene expression during erythropoiesis [2]. However, the function of Klf3 in other lineages has been less well studied. This widely expressed transcription factor has reported roles in the differentiation of marginal zone B cells, eosinophil function and inflammation [3]. We utilised the Klf3-null mouse model [4] to more closely examine the role of Klf3 in innate inflammatory cells. These mice exhibit elevated white cell counts, including monocytes (Figure 1A), and inflammation of the skin. Conditional knockout of Klf4 in myeloid cells leads to a deficiency of inflammatory macrophages [5]. To test our hypothesis KLF3 normally represses inflammation, perhaps by antagonising the action of KLF4, bone-marrow derived macrophages (BMDM) were generated from wild-type or Klf3-null mice and stimulated with the bacterial toxin lipopolysaccharide (LPS). In wild type BMDM, LPS induces Klf3 gene expression and activation then delayed repression of target genes such as Lgals3 (galectin-3) over a 21 hour time course (Figure 1B). Quantitative real-time PCR and mRNA-seq of WT v Klf3-null macrophages identified ~100 differentially expressed genes involved in proliferation, macrophage activation and inflammation. We transduced the monocyte cell line, RAW264.7 (that expresses Klf4, Klf3 and Klf2), with a retroviral vector expressing a tamoxifen-inducible KLF3-ER fusion construct. KLF3 induced cell cycle arrest and macrophage differentiation. We will report on KLF3-induced gene expression changes (repression and activation), and ChIP-seq for KLF3, in RAW cells. The results shed light on the mechanism by which KLF3 normally represses monocyte/macrophage responses to infection. This study highlights the importance of key transcriptional regulators that tightly control gene expression during inflammation. Loss of Klf3 leads to alterations in this process, resulting in hyper-activation of inflammatory macrophages, increased white cell counts and inflammation of the skin. A greater knowledge of the inflammatory process and how it is regulated is important for our understanding of acute infection and inflammatory disease. Further studies are planned to investigate the role of the KLF3 transcription factor in response to inflammation in vivo. References: 1. Pearson, R., et al., Kruppel-like transcription factors: A functional family. Int J Biochem Cell Biol, 2007. W2. Ilsley, M.D., et al., Kruppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res, 2017. 45(11): p. 6572-6588. W3. Knights, A.J., et al., Kruppel-like factor 3 (KLF3) suppresses NF-kappaB-driven inflammation in mice. J Biol Chem, 2020. 295(18): p. 6080-6091. W4. Sue, N., et al., Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008. 28(12): p. 3967-78. W5. Alder, J.K., et al., Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol, 2008. 180(8): p. 5645-52. Figure 1: Elevated WCC (A) and inflammatory markers (B) in BMDM after LPS stimulation. 1. Total WCC in adult mice (3-6 months old) of the indicated genotypes. There is a statistically significant increase in the WCC in Klf3-/- v wild type mice (P<0.001 by student's t test). B. Time course (hours) after LPS stimulation of confluent BMDM. Klf3 is induced 3-fold by LPS and KLF3-target genes such as Lgals3 are not fully repressed by 21 hours in knockout mice. Figure 1 Disclosures Perkins: Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Sabrina Farrokh ◽  
Niloofar Ale-Agha ◽  
Judith Haendeler ◽  
Joachim Altschmied

Important aspects during aging of human endothelial cells (EC) are an increased apoptosis level and a reduced migratory capacity. In a screening for anti-apoptotic genes we have identified the transcription factor Grainyhead-like 3 (GRHL3) and demonstrated its anti-apoptotic and pro-migratory effects after overexpression and knockdown in EC. To define the domains in GRHL3 responsible for these - potentially also extranuclear - functions we have cloned large scale deletion mutants and mutants with deletions of putative nuclear localization signals (NLS) and analyzed them for their intracellular localization and functional properties. Immunostaining of transfected EC were used to examine the subcellular distribution. Two mutants with deletions in a bioinformatically predicted bipartite NLS were localized predominantly in the cytoplasm. To corroborate these data, lysates of the cells were fractionated biochemically. Western blotting confirmed the immunostaining data, indicating that we have identified the major NLS in GRHL3. To analyze the transcriptional properties of these mutants, we constructed a GRHL3-specific luciferase reporter containing a tandem GRHL3 binding sites in front of a minimal promoter and cotransfected it with expression vectors for the GRHL3 deletion mutants. Besides the previously described activation domain we identified another region required for transcriptional upregulation of target genes in the N-terminal half of the protein. We will now use these mutants to further dissect the regions in GRHL3 necessary for its pro-migratory and anti-apoptotic activities in endothelial cells. This will also allow us to investigate if all of these functions are mediated solely by the activation of target genes or by other mechanisms coupled to a non-nuclear function of GRHL3.


Sign in / Sign up

Export Citation Format

Share Document