Abstract 304: Estrogen Plays a Protective Role in Advanced Heart Failure by Suppressing Cardiac Fibrosis Associated Genes via miR129 Induction

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Salil Sharma ◽  
Andrea Iorga ◽  
Harnek Singh ◽  
Jingyaun Li ◽  
Mansoureh Eghbali

We have previously shown that short term treatment of estrogen(E2) can rescue advance heart failure(HF) and decreases associated fibrosis. We hypothesized that E2 can reduce fibrosis by regulating the levels of specific microRNAs including miR129-5p(miR129) through ERβ mediated mechanism. We used transaortic constriction to induce HF in male mice, and once the ejection fraction (EF) reached ~30%, one group of animals was sacrificed (HF), and the other group received 17b-estradiol via a subcutaneous pellet implant (0.012mg/pellet, n=16) (E2) for 10 days. Sham-operated mice served as CTRL. Serial echocardiography was performed to monitor cardiac structure and function. Short-term E2 treatment rescued pressure overload-induced decompensated HF in mice by restoring the EF from 33.17±1.12% to 53.05±1.29 (p <0.001, n=16). E2 decreased both interstitial and perivascular fibrosis in HF. Microarray analysis comparing HF with E2 revealed ~70 microRNAs including miR129 regulated by E2. qPCR validation revealed that E2 treatment upregulates miR129 by 2 folds compared to HF restoring it to CTRL levels. Treatment of HF with ERβ agonist (DPN), but not ERα agonist (PPT) resulted in the upregulation of miR129 indicating the E2 mediated induction of miR129 is mediated through ERβ. In vitro, angiotensin II treatment significantly downregulated miR129 expression in neonatal rat fibroblasts (NRVF) which was restored by E2 and DPN but not by E2+ERβ antagonist (PHPT) further confirming the role of ERβ in regulating miR129. In vitro, OE of miR129 in both neonatal and adult rat cardiac fibroblasts (ARVF) resulted in significant downregulation of transcripts of many in-silico predicted pro-fibrotic target genes including EGFR, RUNX, GREM1, COL2A, PDGFA, PDGFRA and the transcription factor SOX4. OE of miR129 in fibroblasts also resulted in downregulation of EGFR protein. Gain of miR129 prevented the transition of fibroblasts to myofibroblasts in both NRVF and ARVF and inhibited fibroblast proliferation in vitro. In conclusion, E2 treatment during HF induces miR129 likely through ERβ. MiR129 represses fibrosis by targeting key genes associated with cardiac fibrosis, inhibits fibroblast proliferation and fibroblast to myofibroblast transition.

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Shuang Li ◽  
Dong Han ◽  
Dachun Yang

Background: Hypertensive ventricular remodeling is a common cause of heart failure. Activation and accumulation of cardiac fibroblasts is the key contributors to this progression. Our previous studies indicate that transient receptor potential ankyrin 1 (TRPA1), a Ca 2+ channel necessary and sufficient, play a prominent role in ventricular remodeling. However, the molecular mechanisms regulating remain poorly understood. Methods: We used TRPA1 agonists cinnamaldehyde (CA) pretreatment and TRPA1 knockout mice to understand the role of TRPA1 in ventricular remodeling of hypertensive heart. We also examine the mechanisms through gene transfection and in vitro experiments. Results: TRPA1 overexpression fully activated myofibroblast transformation, while fibroblasts lacking TRPA1 were refractory to transforming growth factor β (TGF-β) -induced transdifferentiation. TRPA1 knockout mice showed hypertensive ventricular remodeling reversal following pressure overload. We found that the TGF-β induced TRPA1 expression through calcineurin-NFAT-Dyrk1A signaling pathway via the TRPA1 promoter. Once induced, TRPA1 activates the Ca 2+ -responsive protein phosphatase calcineurin, which itself induced myofibroblast transdifferentiation. Moreover, inhibition of calcineurin prevented TRPA1-dependent transdifferentiation. Conclusion: Our study provides the first evidence that TRPA1 regulation in cardiac fibroblasts transformation in response to hypertensive stimulation. The results suggesting a comprehensive pathway for myofibroblast formation in conjunction with TGF-β, Calcineurin, NFAT and Dyrk1A. Furthermore, these data indicate that negative modulation of cardiac fibroblast TRPA1 may represent a therapeutic strategy against hypertensive cardiac remodeling.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kota Tonegawa ◽  
Hiroyuki Nakayama ◽  
Hiromi Igarashi ◽  
Sachi Matsunami ◽  
Nao Hayamizu ◽  
...  

Background: Cardiac fibroblasts (CFs) are the most prevalent cell types in heart and play important roles in cardiac remodeling. While the roles of β-adrenergic receptor (βAR) signaling in cardiomyocytes (CMs) are well characterized, those in CFs remain to be elusive due to lack of convenient method to assess those signaling. There are three subtypes of, βAR β1, β2, β3 and β2AR is reported to be expressed in CFs by which enhances cell proliferation and production of inflammatory cytokines. Clinical efficacy of non-selective β blocker carvedilol for heart failure (HF) surpasses that of β1 selective blocker metoprolol, suggesting critical roles of β2 and β3AR in the pathogenesis of HF. Objective: To elucidate the signaling downstream βARs in CFs in heart. Methods and Results: Caveolae is an important microdomain for signal transduction, such as βAR, present in CMs or CFs. To elucidate βAR signaling of caveolae in CFs, we generated a fusion protein composed of phospholamban (PLN) and caveolin3 (Cav3) representing PKA activation as phosphorylation at S16 of PLN and CaMKII as that at T17 in caveolae. Thus, activation of PKA or CaMKII is detectable by anti-phospho-S16 or T17 antibody, respectively. In neonatal rat CFs (NRCFs) infected PLN-Cav3 adenovirus, stimulation by isoproterenol (ISO) led to enhanced phosphorylation of both S16 and T17, suggesting PKA and CaMKII activation in caveolae of CFs. RT-PCR analyses showed β2AR and β3AR were present in NRCFs. Stimulation with β2AR selective agonists activated both PKA and CaMKII, while β3AR elicited solely PKA activation, analyzed by using β3AR selective agonist/antagonist. In addition, in order to examine the significance of βAR stimulation for heart failure, we administered ISO continuously for two weeks in β2ARKO mice. As a result, fibrosis was suppressed in β2ARKO mice compared with wild-type mice (0.35% vs 2.37%, p<0.05) suggesting critical roles of β2AR in development of cardiac fibrosis caused by βAR stimulation in mice. Conclusions: Both β2 and β3AR are expressed in NRCFs and transduce distinct signaling and β2AR selective stimulation elicit development of cardiac fibrosis via activation of CaMKII signaling. Thus, selective βAR regulation could be potential novel anti-fibrotic therapeutics in HF.


2018 ◽  
Vol 132 (19) ◽  
pp. 2117-2120
Author(s):  
Michael J. Boyer ◽  
Satoru Eguchi

Hypertension is a significant risk factor for the development of cardiovascular ailments, including ischemic heart disease and diastolic dysfunction. In a recent issue of Clinical Science, Li et al. [Clin. Sci. (2018) 132, 1855–1874] report that β-2 microglobulin (β2M) is a novel secreted soluble factor released by cardiac myocytes during pressure overload that promotes profibrotic gene expression in cardiac fibroblasts both in vitro and in vivo. Their study further identifies elevated β2M levels as a possible biomarker for hypertensive patients with cardiac complications. The authors propose a mechanism that mechanically stretched cardiomyocytes release soluble β2M which, through paracrine communication with cardiac fibroblasts, transactivates epidermal growth factor receptor (EGFR) to initiate acute signal transduction and up-regulate profibrotic genes, thereby promoting fibrosis. Here, we will discuss the background, significance of the study, alternative mechanisms, and future directions.


2021 ◽  
Author(s):  
Nicholas W. Chavkin ◽  
Soichi Sano ◽  
Ying Wang ◽  
Kosei Oshima ◽  
Hayato Ogawa ◽  
...  

AbstractBackgroundA hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early pro-inflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation.Methods and ResultsThe role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction (TAC) surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after TAC surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2-KO mice displayed a pro-inflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, TAC surgery led to the death of all mice by day 6 that was associated with myocardial hyper-inflammation and vascular leakage.ConclusionsTogether, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 739 ◽  
Author(s):  
Viviana Pardo-Jiménez ◽  
Patricio Navarrete-Encina ◽  
Guillermo Díaz-Araya

New histone deacetylases (HDAC) inhibitors with low toxicity to non-cancerous cells, are a prevalent issue at present because these enzymes are actively involved in fibrotic diseases. We designed and synthesized a novel series of thiazolyl-coumarins, substituted at position 6 (R = H, Br, OCH3), linked to classic zinc binding groups, such as hydroxamic and carboxylic acid moieties and alternative zinc binding groups such as disulfide and catechol. Their in vitro inhibitory activities against HDACs were evaluated. Disulfide and hydroxamic acid derivatives were the most potent ones. Assays with neonatal rat cardiac fibroblasts demonstrated low cytotoxic effects for all compounds. Regarding the parameters associated to cardiac fibrosis development, the compounds showed antiproliferative effects, and triggered a strong decrease on the expression levels of both α-SMA and procollagen I. In conclusion, the new thiazolyl-coumarin derivatives inhibit HDAC activity and decrease profibrotic effects on cardiac fibroblasts.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ping Chen ◽  
Dongchao Lv ◽  
Jiahong Xu ◽  
Qiulian Zhou ◽  
Qi Sun ◽  
...  

Fibrosis is one of the most important characteristics of cardiac remodeling during heart failure. The accumulation of extracellular matrix (ECM) within myocardium is the major feature of cardiac fibrosis. microRNA (miR)-19b, a key functional member of miR-19-72 cluster family, has been suggested to be involved in aging-induced heart failure through regulating ECM-related proteins, such as connective tissue growth factor (CTGF), thrombospondin-1 (TSP-1), collagen-1A1, and collagen-3A1. In the current study, we aimed to investigate the role of miR-19b in cardiac fibroblast function and ECM production using neonatal rat cardiac fibroblasts in primary culture. We found that overexpression of miR-19b increased, while inhibition of miR-19b decreased the proliferation and migration of cardiac fibroblasts, using Cell Counting Kit-8 (CCK-8) (0.660±0.019 vs 0.720±0.014 in nc-mimic and miR-19b mimic, 0.506±0.009 vs 0.454±0.008 in nc-inhibitor and miR-19b inhibitor, respectively), EdU incorporation assay (0.059±0.002 vs 0.096±0.006 in nc-mimic and miR-19b mimic, 0.059±0.006 vs 0.040±0.003 in nc-inhibitor and miR-19b inhibitor, respectively), and wound healing assay (0.528±0.024 vs 0.896±0.027 in nc-mimic and miR-19b mimic,0.520±0.028 vs 0.174±0.019 in nc-inhibitor and miR-19b inhibitor, respectively), respectively. Meanwhile, the inhibition of miR-19b downregulated the mRNA levels of α-SMA (0.556±0.048 vs 1.038±0.137 in nc-inhibitor and miR-19b inhibitor, respectively) and collagen-1 (1.023±0.116 vs 0.551±0.033 in nc-inhibitor and miR-19b inhibitor, respectively) in cardiac fibroblasts, indicating a reduction in fibroblast activation and ECM production via miR-19b inhibition. Furthermore, we found that PTEN was negatively regulated by miR-19b in cardiac fibroblasts using western blot analysis. PTEN, a well-known tumor-suppressor gene, has been known to inhibit cell proliferation and migration. However, it remains to be further clarified whether PTEN could mediate the effect of miR-19b in the proliferation, migration and activation of fibroblasts. These data might provide important evidence suggesting that miR-19b could be a potential therapeutic target for cardiac fibrosis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Dongchao Lv ◽  
Yihua Bei ◽  
Qiulian Zhou ◽  
Qi Sun ◽  
Tianzhao Xu ◽  
...  

MicroRNAs (miRNAs, miRs), a novel group of small non-coding RNAs, play important roles in cardiac fibrosis. Exercise-induced physiological cardiac growth is associated with hypertrophy and proliferation of cardiomyocytes. In addition, exercise has been shown to inhibit cardiac fibrosis. However, relative little is known about whether exercise could attenuating cardiac fibrosis via targeting miRNA. miR-486 is a muscle enriched miRNAs, however, its role in heart is relative unclear. The current study aimed to investigate the role of miR-486 in exercise-induced cardiac growth in a 3-week swimming training murine model as well as in the function of cardiac fibroblasts and production of extracellular matrix (ECM) using neonatal rat cardiac fibroblasts in primary culture. Our data showed that exercised mice displayed increased about three-fold expression of miR-486 in hearts as measured by microarray analysis and qRT-PCRs. EdU proliferation assays demonstrated that miR-486 mimics decreased (5.90%±0.57% vs 4.02%±0.27% in nc-mimics vs miR-486-mimics, respectively), while miR-486 inhibitor increased the proliferation of cardiac fibroblasts in vitro (5.87%±0.16% vs 9.60%±0.58% in nc-inhibitor vs miR-486-inhibitor, respectively). Although downregulation of miR-486 had no regulatory effect on α-sma and collagen-1 gene expression in cardiac fibroblasts, overexpression of miR-486 significantly reduced the mRNA level of α-sma (1.01±0.08 vs 0.28±0.04 in nc-mimics vs miR-486-mimics, respectively) and collagen-1(1.02±0.12 vs 0.58±0.09 in nc-mimics vs miR-486-mimics, respectively), indicative of attenuated activation of fibroblasts and reduced production of ECM. These data reveal that miR-486 is essentially involved in the proliferation and activation of cardiac fibroblasts, and might be a key regulator mediating the benefit of exercise in preventing cardiac fibrosis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Hadi Khalil ◽  
Onur Kanisicak ◽  
Robert N. Correll ◽  
Michelle Sargent ◽  
Jeffery D. Molkentin

Heart failure is a progressive disease characterized by cardiomyocyte loss, interstitial fibrosis, and chamber remodeling. During physiological conditions cardiac fibroblasts contribute to the homeostatic maintenance of myocardial structure as well as the maintenance of biochemical, mechanical and electrical properties of the heart. Injury and/or cytokine stimulation activate fibroblasts which transdifferentiate into myofibroblasts. These newly formed cells secrete extracellular matrix (ECM) for wound healing and tissue remodeling through their contractile activity. Fibrosis mediated by these cells can initially be a beneficial response that acutely scarifies areas after an infarct to prevent wall rupture. However, during chronic disease states such as heart failure, persistent recruitment and activation of fibroblasts leads to excessive deposition of ECM that results in stiffening and pathological remodeling of the ventricles. During chronic heart disease, cardiomyocytes, immune cells and fibroblasts secrete the cytokine transforming growth factor-TGFβ, which activates fibroblasts and promotes their conversion to myofibroblasts. Manipulation of TGFβ by losartan, which antagonizes angiotensin II (AngII) and aspects of TGFβ signaling, has shown some anti-fibrotic effects in cardiovascular remodeling. Also deletion of Tgfbr1 (type I TGFβ receptor) in cardiomyocytes or a TGFβ blocking antibody reduced the fibrotic response after pressure overload. However heart failure was not improved because deleterious TGFβ signaling in fibroblasts persisted. We therefore utilized a novel fibroblast-specific inducible Cre-expressing mouse line (Periostin-MerCreMer) to examine the canonical (Smad2/3) TGFβ signaling within fibroblasts to determine how these cells and their activation mediate disease in heart failure. Our data indicate that fibroblast-specific deletion of Smad3 but not Smad2 was sufficient to significantly inhibit myocardial fibrosis. Smad2/3 double nulls were also generated and analyzed, as were TGFBR1 and TGFBR2 loxp targeted mice, also crossed with the Postn-MerCreMer knockin allele to achieve specificity in activated fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document