Abstract 329: HSF-1 Knockout Enhances Dietary Cholesterol Metabolism by Inducing CYP7A1 Gene Expression and Attenuates Atherosclerosis

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Govindasamy Ilangovan ◽  
Krishnamurthy Karthikeyan

Objective: Coronary heart disease and diabetes are highly prevalent among obese populations due to aberrant dietary cholesterol metabolism. Here we investigated the effect of heat shock factor-1 (HSF-1) on atherosclerosis and dietary cholesterol metabolism. Methods and Results: Atherogenic western diet-induced weight gain was reduced in HSF-1 and LDLr double knock out mice (HSF-1 -/- /LDLr -/- ), compared to LDLr -/- mice. Atherosclerotic lesion growth in aortic arch and carotid regions was retarded. Also, repression of PPAR-γ2 and AMPKα expression in adipose tissue, low hepatic steatosis, and lessened plasma adiponectins and lipoproteins were observed. Furthermore, reduced heat shock proteins and their mRNA levels in atherosclerotic lesions correlated with reduction in lesion burden. In HSF-1 -/- /LDLr -/- liver, higher cholesterol 7α hydroxylase (CYP7A1, the rate limiting enzyme in the synthesis of bile acid from cholesterol) and MDR1/p-glycoprotein (bile salt transporter across the hepatocyte canalicular membrane) gene expressions were observed, consistent with higher bile acid sequestration and larger hepatic bile ducts. HSF-1 deletion, however, upregulated both CYP7A1 enzyme and MDR1/p-glycoportein expression and activities, due to removal of its repressive binding in the CYP7A1 and MDR1 gene promoters. This increased the conversion of cholesterol into 7-α-hydroxycholesterol and bile acid, and dietary cholesterol metabolism. Conclusions: HSF-1 ablation not only eliminates heat shock response to retard atherosclerosis, but it also transcriptionally upregulates CYP7A1 and MDR1/P-gp axis to increase cholesterol metabolism. Therefore, HSF-1 is a metabolic regulator of dietary cholesterol and a major contributor to heart disease among obese population.

2004 ◽  
Vol 286 (5) ◽  
pp. G730-G735 ◽  
Author(s):  
Guorong Xu ◽  
Lu-xing Pan ◽  
Hai Li ◽  
Quan Shang ◽  
Akira Honda ◽  
...  

Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-α) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups ( n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-α, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-α increased to activate LXR-α, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-α was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-α on CYP7A1.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2548-2548
Author(s):  
Jo Ishizawa ◽  
Rodrigo Omar Jacamo ◽  
Kensuke Kojima ◽  
Dhruv Chachad ◽  
Vivian Ruvolo ◽  
...  

Abstract Heat shock factor 1 (HSF1) is best known as a key sensor of proteotoxic stress, but accumulating evidence also supports a major role for this transcriptional regulator in cancer biology. In a variety of human solid tumor cells, downregulation of HSF1 inhibits growth, induces cell death and limits metastatic potential. In breast cancers, nuclear accumulation of HSF1 and a tumor-specific gene expression signature reflecting HSF1 activation were found to be strongly associated with poor outcome (Mendillo et al, Cell 2012). In addition, we have recently reported, as a counter-intuitive reversal of the central dogma, that inhibition of protein translation represses the constitutive activation of HSF1 in cancers, and that HSF1 inhibition induced by the potent eIF4a inhibitor rohinitib (RHT) exerts profound, far-ranging anti-tumor effects (Santagata et al, Science 2013). Review of public databases supports targeting of HSF1 and eIF4a in AML: mRNA levels of HSPA8, one of the primary HSF1 targets, are correlated with poor prognosis in AML (Prognoscan, data from Metzeler et al, Blood 2008) and eIF4a mRNA levels were highest in AML among 12 cancer types (Oncomine, data from Ramaswamy et al, PNAS 2001). Here, we demonstrate that inactivation of HSF1 in acute myeloid leukemias (AMLs) by RHT exerts pronounced apoptogeniceffects with preferential activity against FLT3-ITD mutant cells in cell culture and in mice. First, we confirmed our previous finding of inactivation of HSF1 by RHT in AML. In OCI-AML3, MOLM-13 and MV4;11 cells, mRNA levels of HSPA8 were reduced by 70% after RHT treatment compared to untreated controls. OCI-AML3 cells were then infected with lentivirus encoding a reporter GFP-luciferase fusion protein the expression of which is driven by promoter elements from either the HSPA1A or HSPA6 genes; an approximately 50% reduction of reporter induction by heat shock was observed after RHT treatment compared to untreated controls. Next, treatment of 7 human AML cell lines in culture showed that RHT induces marked anti-leukemia effects at low nanomolar concentrations (LD50s; 9.5 to 99.5 nM, IC50s; 4.7 to 8.8 nM, based on AnnexinV/PI-positivity as determined by flow cytometry at 72hr). The most pronounced cytotoxic effects were observed in FLT3-ITD+ cell lines (LD50s < 10 nM in MOLM13 and MV4;11 cells). Using two sets of isogenic cell lines (Ba/F3 and OCI-AML3 cells with FLT3-ITD or wild-type (wt) FLT3), we confirmed that RHT more potently kills FLT3-ITD cells (LD50s; 65.3 vs 20.1 nM in Ba/F3 cells). Furthermore, the combination of FLT3 inhibitor sorafenibwith RHT showed synergistic effects in cell culture (Combination Index: ED50 0.85, ED75 0.86, ED90 0.89). Immunoblot analysis showed higher phospho-HSF1 (Serine 326) in FLT3-ITD Ba/F3 cells than FLT3-wt cells, suggesting greater dependence of FLT3-ITD cells on HSF1 activation for survival. We also tested primary samples from 17 AML patients and bone marrow (BM) samples from 8 healthy donors. RHT potently induced apoptosis in AML cells, while relatively sparing normal BM cells (Figure 1A). Importantly, a similarly significant difference in sensitivity was also observed between AML and normal stem cells (CD45+CD34+CD38-). Moreover, the activity of RHT against the leukemic population was significantly higher in FLT3-ITD than in FLT3-wt cells (Figure 1B). We also evaluated the activity of RHT in a FLT3 mutant AML xenograft model using GFP-luciferase labeled MOLM-13 cells. Significantly decreased luciferase activity was detected by bioluminescence imaging and a dose-dependent reduction in GFP+ leukemic cells was seen in peripheral blood and BM by day 16 (Figure 2). Survival of the treatment groups was significantly prolonged (median; 18 vs 22.5 vs 24 days respectively, p < 0.0001). In conclusion, HSF1 function provides an attractive therapeutic target in AML. The eIF4a inhibitor RHT down-regulates HSF1 transcriptional function and exerts robust anti-leukemia activity in cell culture and in mice. Although the relative contributions of HSF1 inactivation and translation inhibition to the net anti-leukemic activity of RHT remain to be defined, promising features of this approach include its activity against AML stem cells, while sparing normal stem cells and its particularly potent cytotoxicity for poor-prognosis FLT3-ITD AMLs. Taken together, these preclinical findings strongly support further development of eIF4a inhibitors in the treatment of AML. Disclosures Ishizawa: Karyopharm: Research Funding. Konopleva:Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding.


2015 ◽  
Author(s):  
Senhao Zhang ◽  
Yinghua Shi ◽  
Minggen Liang ◽  
Jia Li ◽  
Chengzhang Wang

The experiment was performed to determine the effects of alfalfa saponin extract (ASE) on the performance and cholesterol metabolism of laying hens. A total of 150 Hy-Line Brown hens with 28 weeks old, were randomly divided into five treatment groups (five replicates per treatment with six hens per replicate). Diets containing 0, 60, 120, 240, and 480 mg ASE/kg were fed to hens for 77 days. The shell thickness had a trend to increase. The yolk cholesterol and liver bile acid decreased significantly (ASE 60 and 480 mg/kg groups for yolk cholesterol, and ASE 60 and 240 mg/kg groups for liver bile acid). Fecal bile acid has an elevation trend as ASE increased. The expression of very low density apolipoprotein-Ⅱ (apoVLDL-Ⅱ) gene was not affected by adding ASE. However, the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene and cholesterol 7α-hydroxylase (CYP7A1) gene were significantly up-regulated. The mRNA expression of very-low-density-lipoprotein receptor(VLDLR) gene was suppressed due to adding ASE supplementation in the diet. These findings indicated that dietary ASE could regulate cholesterol levels in hens by up-regulating the mRNA levels of HMG-CoA and CYP7A1 and suppressing the expression of VLDLR.


2015 ◽  
Author(s):  
Senhao Zhang ◽  
Yinghua Shi ◽  
Minggen Liang ◽  
Jia Li ◽  
Chengzhang Wang

The experiment was performed to determine the effects of alfalfa saponin extract (ASE) on the performance and cholesterol metabolism of laying hens. A total of 150 Hy-Line Brown hens with 28 weeks old, were randomly divided into five treatment groups (five replicates per treatment with six hens per replicate). Diets containing 0, 60, 120, 240, and 480 mg ASE/kg were fed to hens for 77 days. The shell thickness had a trend to increase. The yolk cholesterol and liver bile acid decreased significantly (ASE 60 and 480 mg/kg groups for yolk cholesterol, and ASE 60 and 240 mg/kg groups for liver bile acid). Fecal bile acid has an elevation trend as ASE increased. The expression of very low density apolipoprotein-Ⅱ (apoVLDL-Ⅱ) gene was not affected by adding ASE. However, the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene and cholesterol 7α-hydroxylase (CYP7A1) gene were significantly up-regulated. The mRNA expression of very-low-density-lipoprotein receptor(VLDLR) gene was suppressed due to adding ASE supplementation in the diet. These findings indicated that dietary ASE could regulate cholesterol levels in hens by up-regulating the mRNA levels of HMG-CoA and CYP7A1 and suppressing the expression of VLDLR.


2003 ◽  
Vol 31 (2) ◽  
pp. 455-456 ◽  
Author(s):  
A. Vasilaki ◽  
L.M Iwanejko ◽  
F. McArdle ◽  
C.S. Broome ◽  
M.J. Jackson ◽  
...  

Skeletal muscle adapts rapidly following exercise by the increased production of heat-shock proteins (HSPs). The aim of this study was to examine the ability of muscle from adult and aged mice to produce HSPs following non-damaging exercise. Adult and aged B6XSJL mice were anaesthetized and their hind limbs were subjected to isometric contractions. At different time points, muscles were analysed for HSP production by Western and Northern blotting and by electrophoretic mobility-shift assay. HSP protein and mRNA levels in muscles from adult mice increased significantly following exercise. This was not evident in muscles of aged mice. In contrast, binding of the transcription factor heat-shock factor 1 (HSF1) was not grossly altered in muscles of aged mice compared with adult mice. The data suggest that the inability of muscles of aged mice to produce HSPs appears to be due to alterations during gene transcription.


2012 ◽  
Vol 2012 ◽  
pp. 1-3 ◽  
Author(s):  
Gideon Charach ◽  
Alexander Rabinovich ◽  
Ori Argov ◽  
Moshe Weintraub ◽  
Pavel Rabinovich

The impact of cholesterol and different classes of lipoproteins on the development of coronary artery disease (CAD) has been investigated in extensively during the past 50 years. The cholesterol metabolism is dependent on numerous factors, including dietary fat, fractional absorption of dietary cholesterol, tissue stores of cholesterol, endogenous cholesterol synthesis, and fecal bile excretion. Several studies showed significantly lower amounts of bile acid secretion in adult patients with CAD compared to non-CAD patients. Could it be that the inability to efficiently excrete bile acids may lead to CAD development?


2018 ◽  
Vol 148 (5) ◽  
pp. 702-711 ◽  
Author(s):  
Kelly E Mercer ◽  
Sudeepa Bhattacharyya ◽  
Maria Elena Diaz-Rubio ◽  
Brian D Piccolo ◽  
Lindsay M Pack ◽  
...  

Abstract Background During the postnatal feeding period, formula-fed infants have higher cholesterol synthesis rates and lower circulating cholesterol concentrations than their breastfed counterparts. Although this disparity has been attributed to the uniformly low dietary cholesterol content of typical infant formulas, little is known of the underlying mechanisms associated with this altered cholesterol metabolism phenotype. Objective We aimed to determine the molecular etiology of diet-associated changes in early-life cholesterol metabolism with the use of a postnatal piglet feeding model. Methods Two-day-old male and female White-Dutch Landrace piglets were fed either sow milk (Sow group) or dairy-based (Milk group; Similac Advance powder) or soy-based (Soy group; Emfamil Prosobee Lipil powder) infant formulas until day 21. In addition to measuring serum cholesterol concentrations, hepatic and intestinal genes involved in enterohepatic circulation of cholesterol and bile acids were analyzed by real-time reverse-transcriptase polymerase chain reaction and Western blot. Bile acid concentrations were measured by liquid chromatography–mass spectrometry in serum, liver, and feces. Results Compared with the Sow group, hepatic cholesterol 7α hydroxylase (CYP7A1) protein expression was 3-fold higher in the Milk group (P < 0.05) and expression was 10-fold higher in the Soy group compared with the Milk group (P < 0.05). Likewise, fecal bile acid concentrations were 3-fold higher in the Soy group compared with the Milk group (P < 0.05). Intestinal mRNA expression of fibroblast factor 19 (Fgf19) was reduced in the Milk and Soy groups, corresponding to 54% and 67% decreases compared with the Sow group. In the Soy group, small heterodimer protein (SHP) protein expression was 30% lower compared with the Sow group (P < 0.05). Conclusions These results indicate that formula feeding leads to increased CYP7A1 protein expression and fecal bile acid loss in neonatal piglets, and this outcome is linked to reduced efficacy in inhibiting CYP7A1 expression through FGF19 and SHP transcriptional repression mechanisms.


2012 ◽  
Vol 302 (5) ◽  
pp. F614-F624 ◽  
Author(s):  
Julia Rozenfeld ◽  
Osnat Tal ◽  
Orly Kladnitsky ◽  
Lior Adler ◽  
Edna Efrati ◽  
...  

The pendrin/SLC26A4 Cl−/HCO3− exchanger, encoded by the PDS gene, is expressed in cortical collecting duct (CCD) non-A intercalated cells. Pendrin is essential for CCD bicarbonate secretion and is also involved in NaCl balance and blood pressure regulation. The intestinal peptide uroguanylin (UGN) is produced in response to oral salt load and can function as an “intestinal natriuretic hormone.” We aimed to investigate whether UGN modulates pendrin activity and to explore the molecular mechanisms responsible for this modulation. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. UGN decreased endogenous pendrin mRNA levels in HEK293 cells. A 4.2-kb human PDS (h PDS) promoter sequence and consecutive 5′ deletion products were cloned into luciferase reporter vectors and transiently transfected into HEK293 cells. Exposure of transfected cells to UGN decreased h PDS promoter activity. This UGN-induced effect on the h PDS promoter occurred within a 52-bp region encompassing a single heat shock element (HSE). The effect of UGN on the promoter was abolished when the HSE located between nt −1119 and −1115 was absent or was mutated. Furthermore, treatment of HEK293 cells with heat shock factor 1 (HSF1) small interfering RNA (siRNA) reversed the UGN-induced decrease in endogenous PDS mRNA level. In conclusion, pendrin-mediated Cl−/HCO3− exchange in the renal tubule may be regulated transcriptionally by the peptide hormone UGN. UGN exerts its inhibitory activity on the h PDS promoter likely via HSF1 action at a defined HSE site. These data define a novel signaling pathway involved in the enterorenal axis controlling electrolyte and water homeostasis.


2016 ◽  
Vol 100 ◽  
pp. S184-S185
Author(s):  
Karthikeyan Krishnamurthy ◽  
Zhenguo Liu ◽  
Govindasamy Ilangovan

Sign in / Sign up

Export Citation Format

Share Document