Abstract 38: Engineered Anisotropic Scaffolds Promote the Function of Cocultured Cardiomyocytes Derived From Human Pluripotent Stem Cells

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Maureen Wanjare ◽  
Joseph Jung-Woong Kim ◽  
Ngan Huang

Since the heart is effectively an anisotropic organ in which the cardiomyocytes (CM) are locally aligned in series, it is important to engineer cardiac tissues that promote CM alignment in order to closely mimic the architecture of the native tissue, as well as better mimic the cellular composition of the heart. The objective of this study was to define the role of anisotropic extracellular matrix cues on the organization and survival of human induced pluripotent stem cell-derived CMs (hiPSC-CMs) by co-culturing hiPSC-CMs and primary endothelial cells (ECs) on parallel-aligned microfibrillar scaffolds. The hiPSC-CMs were generated from hiPSCs using small molecule Wnt pathway agonists and antagonists. Subsequently, the hiPSC-CMs were sequentially seeded on day 15 after EC attachment. We cultured monocultures and cocultures on electrospun three-dimensional (3D) scaffolds of polycaprolactone (PCL) and polyethylene oxide (PEO) polymer blends with an average fiber diameter of 14 μm. Aligned scaffolds were fabricated by stretching the randomly oriented scaffolds by 300% of the original scaffold length. Randomly oriented fibrillar scaffolds had an average pore diameter of 17 μm when compared to the 36 μm pore diameter of aligned scaffolds. Our results indicate that alignment of co-cultured cells at a 5:1 hiPSC-CMs : EC ratio was promoted by anistropic 3D electrospun scaffolds when compared to similar random 3D electrospun scaffolds. Additionally, cocultured cells on aligned fibrillar scaffolds had a mean angle of orientation of 30.8°, relative to the direction of fibrils, which was similar to that of hiPSC-CM monocultures on aligned scaffolds (32.8°). In contrast, the degree of alignment of hiPSC-CMs on randomly oriented fibrillary scaffolds was 43.4°, which suggests a non-oriented population of cells. Aligned scaffolds also produced more synchronized cardiomyocyte contraction than random scaffold orientations, although both induced spontaneous contraction frequency of ~1Hz. This study highlights the importance of nanotopographical cues and intercellular interactions in mediating the morphology and contractility of hiPSC-CMs for treatment of cardiovascular diseases such as myocardial infarction.

Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Marta García-López ◽  
Joaquín Arenas ◽  
M. Esther Gallardo

Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.


2018 ◽  
Vol 360 ◽  
pp. 88-98 ◽  
Author(s):  
Liang Guo ◽  
Sandy Eldridge ◽  
Michael Furniss ◽  
Jodie Mussio ◽  
Myrtle Davis

2020 ◽  
Vol 132 ◽  
pp. 104042 ◽  
Author(s):  
Raleigh M. Linville ◽  
Diego Arevalo ◽  
Joanna C. Maressa ◽  
Nan Zhao ◽  
Peter C. Searson

2019 ◽  
Vol 115 (5) ◽  
pp. 949-959 ◽  
Author(s):  
Nazish Sayed ◽  
Mohamed Ameen ◽  
Joseph C Wu

Abstract Treatment of cancer has evolved in the last decade with the introduction of new therapies. Despite these successes, the lingering cardiotoxic side-effects from chemotherapy remain a major cause of morbidity and mortality in cancer survivors. These effects can develop acutely during treatment, or even years later. Although many risk factors can be identified prior to beginning therapy, unexpected toxicity still occurs, often with lasting consequences. Specifically, cardiotoxicity results in cardiac cell death, eventually leading to cardiomyopathy and heart failure. Certain risk factors may predispose an individual to experiencing adverse cardiovascular effects, and when unexpected cardiotoxicity occurs, it is generally managed with supportive care. Animal models of chemotherapy-induced cardiotoxicity have provided some mechanistic insights, but the precise mechanisms by which these drugs affect the heart remains unknown. Moreover, the genetic rationale as to why some patients are more susceptible to developing cardiotoxicity has yet to be determined. Many genome-wide association studies have identified genomic variants that could be associated with chemotherapy-induced cardiotoxicity, but the lack of validation has made these studies more speculative rather than definitive. With the advent of human induced pluripotent stem cell (iPSC) technology, researchers not only have the opportunity to model human diseases, but also to screen drugs for their efficacy and toxicity using human cell models. Furthermore, it allows us to conduct validation studies to confirm the role of genomic variants in human diseases. In this review, we discuss the role of iPSCs in modelling chemotherapy-induced cardiotoxicity.


2016 ◽  
Vol 4 (11) ◽  
pp. 1655-1662 ◽  
Author(s):  
Li Wang ◽  
Xiaoqing Zhang ◽  
Cong Xu ◽  
Hui Liu ◽  
Jianhua Qin

We present a new strategy to produce a thin collagen membrane from porcine tendons and engineered cardiac tissues using hiPSC-derived cardiomyocytes.


2003 ◽  
Vol 284 (4) ◽  
pp. F852-F862 ◽  
Author(s):  
Sharon L. Ashworth ◽  
Erica L. Southgate ◽  
Ruben M. Sandoval ◽  
Peter J. Meberg ◽  
James R. Bamburg ◽  
...  

Ischemic injury induces actin cytoskeleton disruption and aggregation, but mechanisms affecting these changes remain unclear. To determine the role of actin-depolymerizing factor (ADF)/ cofilin participation in ischemic-induced actin cytoskeletal breakdown, we utilized porcine kidney cultured cells, LLC-PKA4.8, and adenovirus containing wild-type (wt), constitutively active, and inactive Xenopus ADF/cofilin linked to green fluorescence protein [XAC(wt)-GFP] in an ATP depletion model. High adenoviral infectivity (70%) in LLC-PKA4.8 cells resulted in linearly increasing XAC(wt)-GFP and phosphorylated (p)XAC(wt)-GFP (inactive) expression. ATP depletion rapidly induced dephosphorylation, and, therefore, activation, of endogenous pcofilin as well as pXAC(wt)-GFP in conjunction with the formation of fluorescent XAC(wt)-GFP/actin aggregates and rods. No significant actin cytoskeletal alterations occurred with short-term ATP depletion of LLC-PKA4.8 cells expressing GFP or the constitutively inactive mutant XAC(S3E)-GFP, but cells expressing the constitutively active mutant demonstrated nearly instantaneous actin disruption with aggregate and rod formation. Confocal image three-dimensional volume reconstructions of normal and ATP-depleted LLC-PKA4.8 cells demonstrated that 25 min of ATP depletion induced a rapid increase in XAC(wt)-GFP apical and basal signal in addition to XAC-GFP/actin aggregate formation. These data demonstrate XAC(wt)-GFP participates in ischemia-induced actin cytoskeletal alterations and determines the rate and extent of these ATP depletion-induced cellular alterations.


2021 ◽  
Vol 13 (603) ◽  
pp. eabd1817
Author(s):  
Jacqueline M. Bliley ◽  
Mathilde C. S. C. Vermeer ◽  
Rebecca M. Duffy ◽  
Ivan Batalov ◽  
Duco Kramer ◽  
...  

The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)–derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained contractile shortening of >10%. To do this, three-dimensional (3D) EHTs were integrated with an elastic polydimethylsiloxane strip providing mechanical preload and afterload in addition to enabling contractile force measurements based on strip bending. Our results demonstrated that dynamic loading improves the function of wild-type EHTs on the basis of the magnitude of the applied force, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we used hiPSC-derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy due to mutations in the desmoplakin gene. We demonstrated that manifestation of this desmosome-linked disease state required dyn-EHT conditioning and that it could not be induced using 2D or standard 3D EHT approaches. Thus, a dynamic loading strategy is necessary to provoke the disease phenotype of diastolic lengthening, reduction of desmosome counts, and reduced contractility, which are related to primary end points of clinical disease, such as chamber thinning and reduced cardiac output.


Author(s):  
Yunpeng Sui ◽  
Shuanghong Peng

In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.


Sign in / Sign up

Export Citation Format

Share Document