Multiple Motor Learning Experiences Enhance Motor Adaptability

2004 ◽  
Vol 16 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Rachael D. Seidler

Traditional motor learning theory emphasizes that skill learning is specific to the context and task performed. Recent data suggest, however, that subjects exposed to a variety of motor learning paradigms may be able to acquire general, transferable knowledge about skill learning processes. I tested this idea by having subjects learn five different motor tasks, three that were similar to each other and two that were not related. A group of experimental subjects first performed a joystick-aiming task requiring adaptation to three different visuomotor rotations, with a return to the null conditions between each exposure. They then performed the same joystick-aiming task but had to adapt to a change in display gain instead of rotation. Lastly, the subjects used the joystickaiming task to learn a repeating sequence of movements. Two groups of control subjects performed the same number of trials, but learned only the gain change or the movement sequence. Experimental subjects showed generalization of learning across the three visuomotor rotations. Experimental subjects also exhibited transfer of learning ability to the gain change and the movement sequence, resulting in faster learning than that seen in the control subjects. However, transient perturbations affected the movements of the experimental subjects to a greater extent than those of the control subjects. These data demonstrate that humans can acquire a general enhancement in motor skill learning capacity through experience, but it comes with a cost. Although movement becomes more adaptable following multiple learning experiences, it also becomes less stable to external perturbation.

2018 ◽  
Vol 119 (1) ◽  
pp. 5-20 ◽  
Author(s):  
Sandeep K. Subramanian ◽  
Anatol G. Feldman ◽  
Mindy F. Levin

Previous motor learning studies based on adapting movements of the hemiparetic arm in stroke subjects have not accounted for spasticity occurring in specific joint ranges (spasticity zones), resulting in equivocal conclusions about learning capacity. We compared the ability of participants with stroke to rapidly adapt elbow extension movements to changing external load conditions outside and inside spasticity zones. Participants with stroke ( n = 12, aged 57.8 ± 9.6 yr) and healthy age-matched controls ( n = 8, 63.5 ± 9.1 yr) made rapid 40°–50° horizontal elbow extension movements from an initial (3°) to a final (6°) target. Sixteen blocks (6–10 trials/block) consisting of alternating loaded (30% maximal voluntary contraction) and nonloaded trials were made in one (controls) or two sessions (stroke; 1 wk apart). For the stroke group, the tonic stretch reflex threshold angle at which elbow flexors began to be activated during passive elbow extension was used to identify the beginning of the spasticity zone. The task was repeated in joint ranges that did or did not include the spasticity zone. Error correction strategies were identified by the angular positions before correction and compared between groups and sessions. Changes in load condition from no load to load and vice versa resulted in undershoot and overshoot errors, respectively. Stroke subjects corrected errors in 1–4 trials compared with 1–2 trials in controls. When movements did not include the spasticity zone, there was an immediate decrease in the number of trials needed to restore accuracy, suggesting that the capacity to learn may be preserved after stroke but masked by the presence of spasticity. NEW & NOTEWORTHY When arm movements were made outside, instead of inside, the range affected by spasticity, there was an immediate decrease in the number of trials needed to restore accuracy in response to a change in the external load. This suggests that motor learning processes may be preserved in patients with stroke but masked by the presence of spasticity in specific joint ranges. This has important implications for designing rehabilitation interventions predicated on motor learning principles.


2018 ◽  
Vol 2 (4) ◽  
pp. 464-480 ◽  
Author(s):  
Zhenxiang Zang ◽  
Lena S. Geiger ◽  
Urs Braun ◽  
Hengyi Cao ◽  
Maria Zangl ◽  
...  

Graph theoretical functional magnetic resonance imaging (fMRI) studies have demonstrated that brain networks reorganize significantly during motor skill acquisition, yet the associations between motor learning ability, brain network features, and the underlying biological mechanisms remain unclear. In the current study, we applied a visually guided sequential pinch force learning task and graph theoretical analyses to investigate the associations between short-term motor learning ability and resting-state brain network metrics in 60 healthy subjects. We further probed the test-retest reliability ( n = 26) and potential effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine ( n = 19) in independent healthy volunteers. Our results show that the improvement of motor performance after short-term training was positively correlated with small-worldness ( p = 0.032) and global efficiency ( p = 0.025), whereas negatively correlated with characteristic path length ( p = 0.014) and transitivity ( p = 0.025). In addition, using network-based statistics (NBS), we identified a learning ability–associated ( p = 0.037) and ketamine-susceptible ( p = 0.027) cerebellar-cortical network with fair to good reliability (intraclass correlation coefficient [ICC] > 0.7) and higher functional connectivity in better learners. Our results provide new evidence for the association of intrinsic brain network features with motor learning and suggest a role of NMDA-related glutamatergic processes in learning-associated subnetworks.


Neuroscience ◽  
2018 ◽  
Vol 391 ◽  
pp. 131-139 ◽  
Author(s):  
Hisato Sugata ◽  
Kazuhiro Yagi ◽  
Shogo Yazawa ◽  
Yasunori Nagase ◽  
Kazuhito Tsuruta ◽  
...  

Author(s):  
Sayed Kavos Salehi ◽  
Farshid Tahmasebi ◽  
Fateme Sadat Talebrokni

Learning motor skills follows a predictable sequence and stages. The main purpose of this study is to examine Gallahue’s motor learning model and compare it with existing featured models. Until now, several different models have been proposed by several theorists to identify and describe stages of motor learning. Fitts, P.M., and Posner, M.I. (1967. Human performance. Belmont: Brooks/Cole Pub. Co.) proposed a three-stage model for motor skill learning based on the learner’s cognitive state during the learning continuum. Gentile (1972–1978) proposed a two-stage model based on the goals of the learner. Gallahue (1972–2012) presented a three-level model with several accompanying sub-stages. In the present study, these models were compared in order to identify the best model to assist learners and practitioners. Analytical examinations showed that Gallahue’s motor learning model incorporates elements from both Fitts and Posner and Gentile models, but also provides specific guidelines and actions for instructors and practitioners along the learning continuum. Therefore, it seems to be more comprehensive and coherent (logical connection or relevant) in terms of functionality than existing models and provides specific cues for maximizing learning and meet the learner’s needs at each stage of learning.


Author(s):  
Alynda N Wood

Motor learning is a core aspect of human life, and appears to be ubiquitous throughout the animal kingdom. Dopamine, a neuromodulator with a multifaceted role in synaptic plasticity, may be a key signaling molecule for motor skill learning. Though typically studied in the context of reward-based associative learning, dopamine appears to be necessary for some types of motor learning. Mesencephalic dopamine structures are highly conserved among vertebrates, as are some of their primary targets within the basal ganglia, a subcortical circuit important for motor learning and motor control. With a focus on the benefits of cross-species comparisons, this review examines how "model-free" and "model-based" computational frameworks for understanding dopamine's role in associative learning may be applied to motor learning. The hypotheses that dopamine could drive motor learning either by functioning as a reward prediction error, through passive facilitating of normal basal ganglia activity, or through other mechanisms are examined in light of new studies using humans, rodents, and songbirds. Additionally, new paradigms that could enhance our understanding of dopamine's role in motor learning by bridging the gap between the theoretical literature on motor learning in humans and other species are discussed.


2020 ◽  
Vol 34 (9) ◽  
pp. 804-813
Author(s):  
Gabriela Cantarero ◽  
Jake Choynowski ◽  
Maria St. Pierre ◽  
Manuel Anaya ◽  
Matthew Statton ◽  
...  

Background. Concussions affect nearly 3 million people a year and are the leading cause of traumatic brain injury–related emergency department visits among youth. Evidence shows neuromotor regions are sensitive to concussive events and that motor symptoms may be the earliest clinical manifestations of neurodegenerative traumatic brain injuries. However, little is known about the effects repeated concussions play on motor learning. Namely, how does concussion acuity (time since injury) affect different behavioral and neurophysiological components of motor learning? Methods. Using a 3-pronged approach, we assessed (1) behavioral measures of motor learning, (2) neurophysiological measures underlying retention of motor learning known as occlusion, and (3) quantitative survey data capturing affective symptoms of each participant. Collegiate student athletes were stratified across 3 groups depending on their concussion history: (1) NonCon, no history of concussion; (2) Chronic, chronic-state of concussion (>1 year postinjury), or (3) Acute, acute state of concussion (<2 weeks postinjury). Results. We found that athletes in both the acute and chronic state of injury following a concussion had impaired retention and aberrant occlusion in motor skill learning as compared with athletes with no history of concussion. Moreover, higher numbers of previous concussions (regardless of the time since injury) correlated with more severe behavioral and neurophysiological motor impairments by specifically hindering neurophysiological mechanisms of learning to affect behavior. Conclusions. These results indicate the presence of motor learning impairment that is evident within 2 weeks postinjury. Our findings have significant implications for the prognosis of concussion and emphasize the need for prevention, but can also direct more relevant rehabilitation treatment targets.


2013 ◽  
Vol 110 (2) ◽  
pp. 322-333 ◽  
Author(s):  
Tricia L. Gibo ◽  
Sarah E. Criscimagna-Hemminger ◽  
Allison M. Okamura ◽  
Amy J. Bastian

Cerebellar damage impairs the control of complex dynamics during reaching movements. It also impairs learning of predictable dynamic perturbations through an error-based process. Prior work suggests that there are distinct neural mechanisms involved in error-based learning that depend on the size of error experienced. This is based, in part, on the observation that people with cerebellar degeneration may have an intact ability to learn from small errors. Here we studied the relative effect of specific dynamic perturbations and error size on motor learning of a reaching movement in patients with cerebellar damage. We also studied generalization of learning within different coordinate systems (hand vs. joint space). Contrary to our expectation, we found that error size did not alter cerebellar patients' ability to learn the force field. Instead, the direction of the force field affected patients' ability to learn, regardless of whether the force perturbations were introduced gradually (small error) or abruptly (large error). Patients performed best in fields that helped them compensate for movement dynamics associated with reaching. However, they showed much more limited generalization patterns than control subjects, indicating that patients rely on a different learning mechanism. We suggest that patients typically use a compensatory strategy to counteract movement dynamics. They may learn to relax this compensatory strategy when the external perturbation is favorable to counteracting their movement dynamics, and improve reaching performance. Altogether, these findings show that dynamics affect learning in cerebellar patients more than error size.


2019 ◽  
Vol 92 (1101) ◽  
pp. 20190071 ◽  
Author(s):  
Evelien Nackaerts ◽  
Nicholas D'Cruz ◽  
Bauke W Dijkstra ◽  
Moran Gilat ◽  
Thomas Kramer ◽  
...  

In the past decade, neurorehabilitation has been shown to be an effective therapeutic supplement for patients with Parkinson’s disease (PD). However, patients still experience severe problems with the consolidation of learned motor skills. Knowledge on the neural correlates underlying this process is thus essential to optimize rehabilitation for PD. This review investigates the existing studies on neural network connectivity changes in relation to motor learning in healthy aging and PD and critically evaluates the imaging methods used from a methodological point of view. The results indicate that despite neurodegeneration there is still potential to modify connectivity within and between motor and cognitive networks in response to motor training, although these alterations largely bypass the most affected regions in PD. However, so far training-related changes are inferred and possible relationships are not substantiated by brain–behavior correlations. Furthermore, the studies included suffer from many methodological drawbacks. This review also highlights the potential for using neural network measures as predictors for the response to rehabilitation, mainly based on work in young healthy adults. We speculate that future approaches, including graph theory and multimodal neuroimaging, may be more sensitive than brain activation patterns and model-based connectivity maps to capture the effects of motor learning. Overall, this review suggests that methodological developments in neuroimaging will eventually provide more detailed knowledge on how neural networks are modified by training, thereby paving the way for optimized neurorehabilitation for patients.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Svenja Espenhahn ◽  
Holly E Rossiter ◽  
Bernadette C M van Wijk ◽  
Nell Redman ◽  
Jane M Rondina ◽  
...  

Abstract Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50–74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.


1992 ◽  
Vol 12 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Krystyna R. Isaacs ◽  
Brenda J. Anderson ◽  
Adriana A. Alcantara ◽  
James E. Black ◽  
William T. Greenough

This study compared the morphology of cerebellar cortex in adult female rats exposed for 1 month to repetitive exercise, motor learning, or an inactive condition. In the exercise conditions, rats that were run on a treadmill or housed with access to a running wheel had a shorter diffusion distance from blood vessels in the molecular layer of the paramedian lobule when compared to rats housed individually or rats that participated in a motor skill learning task. Rats taught complex motor skills substantially increased the volume of the molecular layer per Purkinje neuron and increased blood vessel number sufficiently to maintain the diffusion distance. These results dissociate angiogenesis associated with increased neuropil volume (as seen in the motor learning group) from angiogenesis associated with increased metabolic demands (as seen in the exercise groups). While the volume fraction of mitochondria did not differ among groups, the mitochondrial volume fraction per Purkinje cell was significantly increased in the motor skill rats. This appears to parallel the previously reported increase in synapses and associated neuropil volume change.


Sign in / Sign up

Export Citation Format

Share Document