scholarly journals Specialized Face Perception Mechanisms Extract Both Part and Spacing Information: Evidence from Developmental Prosopagnosia

2006 ◽  
Vol 18 (4) ◽  
pp. 580-593 ◽  
Author(s):  
Galit Yovel ◽  
Brad Duchaine

It is well established that faces are processed by mechanisms that are not used with other objects. Two prominent hypotheses have been proposed to characterize how information is represented by these special mechanisms. The spacing hypothesis suggests that face-specific mechanisms primarily extract information about spacing among parts rather than information about the shape of the parts. In contrast, the holistic hypothesis suggests that faces are processed as nondecomposable wholes and, therefore, claims that both parts and spacing among them are integral aspects of face representation. Here we examined these hypotheses by testing a group of developmental prosopagnosics (DPs) who suffer from deficits in face recognition. Subjects performed a face discrimination task with faces that differed either in the spacing of the parts but not the parts (spacing task), or in the parts but not the spacing of the parts (part task). Consistent with the holistic hypothesis, DPs showed lower performance than controls on both the spacing and the part tasks, as long as salient contrast differences between the parts were minimized. Furthermore, by presenting similar spacing and part tasks with houses, we tested whether face-processing mechanisms are specific to faces, or whether they are used to process spacing information from any stimulus. DPs' normal performance on the tasks of two houses indicates that their deficit does not result from impairment in a general-purpose spacing mechanism. In summary, our data clearly support face-specific holistic hypothesis by showing that face perception mechanisms extract both part and spacing information.

2002 ◽  
Vol 13 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Shlomo Bentin ◽  
Noam Sagiv ◽  
Axel Mecklinger ◽  
Angela Friederici ◽  
Yves D. von Cramon

Accumulated evidence from electrophysiology and neuroimaging suggests that face perception involves extrastriate visual mechanisms specialized in processing physiognomic features and building a perceptual representation that is categorically distinct and can be identified by face-recognition units. In the present experiment, we recorded event-related brain potentials in order to explore possible contextual influences on the activity of this perceptual mechanism. Subjects were first exposed to pairs of small shapes, which did not elicit any face-specific brain activity. The same stimuli, however, elicited face-specific brain activity after subjects saw them embedded in schematic faces, which probably primed the subjects to interpret the shapes as schematic eyes. No face-specific activity was observed when objects rather than faces were used to form the context. We conclude that the activity of face-specific extrastriate perceptual mechanisms can be modulated by contextual constraints that determine the significance of the visual input.


2019 ◽  
Vol 6 (1) ◽  
pp. 181350
Author(s):  
G. Meinhardt ◽  
B. Meinhardt-Injac ◽  
M. Persike

Numerous studies have reported impairments in perception and recognition, and, particularly, in part-integration of faces following picture-plane inversion. Whether these findings support the notion that inversion changes face processing qualitatively remains a topic of debate. To examine whether associations and dissociations of the human face processing ability depend on stimulus orientation, we measured face recognition with the Cambridge Face Memory Test (CFMT), along with experimental tests of face perception and selective attention to faces and non-face objects in a sample of 314 participants. Results showed strong inversion effects for all face-related tasks, and modest ones for non-face objects. Individual differences analysis revealed that the CFMT shared common variance with face perception and face-selective attention, however, independent of orientation. Regardless of whether predictor and criterion had same or different orientation, face recognition was best predicted by the same test battery. Principal component decomposition revealed a common factor for face recognition and face perception, a second common factor for face recognition and face-selective attention, and two unique factors. The patterns of factor loadings were nearly identical for upright and inverted presentation. These results indicate orientation-invariance of common variance in three domains of face processing. Since inversion impaired performance, but did not affect domain-related associations and dissociations, the findings suggest process-specific but orientation-general mechanisms. Specific limitations by constraints of individual differences analysis and test selection are discussed.


Perception ◽  
2018 ◽  
Vol 47 (10-11) ◽  
pp. 1002-1028 ◽  
Author(s):  
Elite Mardo ◽  
Galia Avidan ◽  
Bat-Sheva Hadad

Recent studies on the development of face processing argue for a late, quantitative, domain-specific development of face processing, and face memory in particular. Most previous findings were based on separately tracking the developmental course of face perception skills, comparing performance across different age groups. Here, we adopted a different approach studying the mechanisms underlying the development of face processing by focusing on how different face skills are interrelated over the years (age 6 to adulthood). Specifically, we examined correlations within and between different categories of tasks: face domain-specific skills involving face recognition based on long-term representations (famous face), and short-term memory retention (Cambridge Face Memory Test), perceptual face-specific marker (inversion effect), global effects in scene perception (global–local task), and the perception of facial expressions. Factor analysis revealed that face identity skills have a similar pattern of interrelations throughout development, identifying two factors: a face domain-specific factor comprising adultlike markers of face processing and a general factor incorporating related, but nonspecific perceptual skills. Domain-specific age-related changes in face recognition entailing short- and long-term retention of face representations were observed, along with mature perceptual face-specific markers and more general perceptual effects predicting face perception skills already at age 6. The results suggest that the domain-specific changes in face processing are unlikely to result from developmental changes in perceptual skills driving face recognition. Instead, development may either involve improvement in the ability to retain face representations in memory or changes in the interactions between the perceptual representations of faces and their representations in long-term memory.


2010 ◽  
Vol 278 (1714) ◽  
pp. 1964-1972 ◽  
Author(s):  
Lisa A. Parr ◽  
Jessica Taubert

Understanding how individual identity is processed from faces remains a complex problem. Contrast reversal, showing faces in photographic negative, impairs face recognition in humans and demonstrates the importance of surface-based information (shading and pigmentation) in face recognition. We tested the importance of contrast information for face encoding in chimpanzees and rhesus monkeys using a computerized face-matching task. Results showed that contrast reversal (positive to negative) selectively impaired face processing in these two species, although the impairment was greater for chimpanzees. Unlike chimpanzees, however, monkeys performed just as well matching negative to positive faces, suggesting that they retained some ability to extract identity information from negative faces. A control task showed that chimpanzees, but not rhesus monkeys, performed significantly better matching face parts compared with whole faces after a contrast reversal, suggesting that contrast reversal acts selectively on face processing, rather than general visual-processing mechanisms. These results confirm the importance of surface-based cues for face processing in chimpanzees and humans, while the results were less salient for rhesus monkeys. These findings make a significant contribution to understanding the evolution of cognitive specializations for face processing among primates, and suggest potential differences between monkeys and apes.


2016 ◽  
Vol 8 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Jason C. Deska ◽  
Steven M. Almaraz ◽  
Kurt Hugenberg

Recent research has demonstrated that ascribing minds to humanlike stimuli is a product of both their perceptual similarity to human faces and whether they engaged configural face processing. We present the findings of two experiments in which we both manipulate the amount of humanlike features in faces (in a doll-to-human morph continuum) and manipulate perceivers’ ability to employ configural face processing (via face inversion) while measuring explicit ratings of mind ascription (Study 1) and the spontaneous activation of humanlike concepts (Study 2). In both studies, we find novel evidence that ascribing minds to entities is an interactive product of both having strong perceptual similarity to human faces and being processed using configural processing mechanisms typical of normal face perception. In short, ascribing mind to others is bounded jointly by the featural cues of the target and by processes employed by the perceiver.


1996 ◽  
Vol 8 (3) ◽  
pp. 278-290 ◽  
Author(s):  
Anthony A. Wright ◽  
William A. Roberts

Three rhesus monkeys and two groups of 10 human subjects judged upright or inverted pictures as same or different. The pictures were black and white pairs of human faces, monkey faces, or scenes. The monkeys were trained with sets of 50 pictures and were tested with other sets of 36 pictures from each category. The groups of 10 human subjects were tested with the same pictures used to test monkeys. Both monkeys and humans showed large performance decrements to inverted human faces relative to upright human faces but neither species showed inversion effects for monkey faces or scenes. A second test with both monkeys and humans showed the same pattern of results with a different set of human-face pictures that varied more in sex (female as well as male), facial hair, eyeglasses, haircut, view angle, and background than those of the first test. The results indicate similar face-processing mechanisms in monkeys and humans despite experiential and evolutionary differences.


2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


2018 ◽  
Author(s):  
Fatima Maria Felisberti

Visual field asymmetries (VFA) in the encoding of groups rather than individual faces has been rarely investigated. Here, eye movements (dwell time (DT) and fixations (Fix)) were recorded during the encoding of three groups of four faces tagged with cheating, cooperative, or neutral behaviours. Faces in each of the three groups were placed in the upper left (UL), upper right (UR), lower left (LL), or lower right (LR) quadrants. Face recognition was equally high in the three groups. In contrast, the proportion of DT and Fix were higher for faces in the left than the right hemifield and in the upper rather than the lower hemifield. The overall time spent looking at the UL was higher than in the other quadrants. The findings are relevant to the understanding of VFA in face processing, especially groups of faces, and might be linked to environmental cues and/or reading habits.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erez Freud ◽  
Andreja Stajduhar ◽  
R. Shayna Rosenbaum ◽  
Galia Avidan ◽  
Tzvi Ganel

AbstractThe unprecedented efforts to minimize the effects of the COVID-19 pandemic introduce a new arena for human face recognition in which faces are partially occluded with masks. Here, we tested the extent to which face masks change the way faces are perceived. To this end, we evaluated face processing abilities for masked and unmasked faces in a large online sample of adult observers (n = 496) using an adapted version of the Cambridge Face Memory Test, a validated measure of face perception abilities in humans. As expected, a substantial decrease in performance was found for masked faces. Importantly, the inclusion of masks also led to a qualitative change in the way masked faces are perceived. In particular, holistic processing, the hallmark of face perception, was disrupted for faces with masks, as suggested by a reduced inversion effect. Similar changes were found whether masks were included during the study or the test phases of the experiment. Together, we provide novel evidence for quantitative and qualitative alterations in the processing of masked faces that could have significant effects on daily activities and social interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunjun Nam ◽  
Takayuki Sato ◽  
Go Uchida ◽  
Ekaterina Malakhova ◽  
Shimon Ullman ◽  
...  

AbstractHumans recognize individual faces regardless of variation in the facial view. The view-tuned face neurons in the inferior temporal (IT) cortex are regarded as the neural substrate for view-invariant face recognition. This study approximated visual features encoded by these neurons as combinations of local orientations and colors, originated from natural image fragments. The resultant features reproduced the preference of these neurons to particular facial views. We also found that faces of one identity were separable from the faces of other identities in a space where each axis represented one of these features. These results suggested that view-invariant face representation was established by combining view sensitive visual features. The face representation with these features suggested that, with respect to view-invariant face representation, the seemingly complex and deeply layered ventral visual pathway can be approximated via a shallow network, comprised of layers of low-level processing for local orientations and colors (V1/V2-level) and the layers which detect particular sets of low-level elements derived from natural image fragments (IT-level).


Sign in / Sign up

Export Citation Format

Share Document