scholarly journals A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression

2018 ◽  
Vol 30 (8) ◽  
pp. 2245-2283 ◽  
Author(s):  
Michiel Stock ◽  
Tapio Pahikkala ◽  
Antti Airola ◽  
Bernard De Baets ◽  
Willem Waegeman

Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imogen Schofield ◽  
David C. Brodbelt ◽  
Noel Kennedy ◽  
Stijn J. M. Niessen ◽  
David B. Church ◽  
...  

AbstractCushing’s syndrome is an endocrine disease in dogs that negatively impacts upon the quality-of-life of affected animals. Cushing’s syndrome can be a challenging diagnosis to confirm, therefore new methods to aid diagnosis are warranted. Four machine-learning algorithms were applied to predict a future diagnosis of Cushing's syndrome, using structured clinical data from the VetCompass programme in the UK. Dogs suspected of having Cushing's syndrome were included in the analysis and classified based on their final reported diagnosis within their clinical records. Demographic and clinical features available at the point of first suspicion by the attending veterinarian were included within the models. The machine-learning methods were able to classify the recorded Cushing’s syndrome diagnoses, with good predictive performance. The LASSO penalised regression model indicated the best overall performance when applied to the test set with an AUROC = 0.85 (95% CI 0.80–0.89), sensitivity = 0.71, specificity = 0.82, PPV = 0.75 and NPV = 0.78. The findings of our study indicate that machine-learning methods could predict the future diagnosis of a practicing veterinarian. New approaches using these methods could support clinical decision-making and contribute to improved diagnosis of Cushing’s syndrome in dogs.


2020 ◽  
Author(s):  
Peer Nowack ◽  
Lev Konstantinovskiy ◽  
Hannah Gardiner ◽  
John Cant

Abstract. Air pollution is a key public health issue in urban areas worldwide. The development of low-cost air pollution sensors is consequently a major research priority. However, low-cost sensors often fail to attain sufficient measurement performance compared to state-of-the-art measurement stations, and typically require calibration procedures in expensive laboratory settings. As a result, there has been much debate about calibration techniques that could make their performance more reliable, while also developing calibration procedures that can be carried out without access to advanced laboratories. One repeatedly proposed strategy is low-cost sensor calibration through co-location with public measurement stations. The idea is that, using a regression function, the low-cost sensor signals can be calibrated against the station reference signal, to be then deployed separately with performances similar to the original stations. Here we test the idea of using machine learning algorithms for such regression tasks using hourly-averaged co-location data for nitrogen dioxide (NO2) and particulate matter of particle sizes smaller than 10 μm (PM10) at three different locations in the urban area of London, UK. Specifically, we compare the performance of Ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of Random Forest (RF) regression and Gaussian Process regression (GPR). We further benchmark the performance of all three machine learning methods to the more common Multiple Linear Regression (MLR). We obtain very good out-of-sample R2-scores (coefficient of determination) > 0.7, frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and is also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best performing method in our calibration setting, followed by Ridge regression and RF regression. However, we also highlight several key limitations of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, none of the methods is able to extrapolate to pollution levels well outside those encountered at training stage. Ultimately, this is one of the key limiting factors when sensors are deployed away from the co-location site itself. Consequently, we find that the linear Ridge method, which best mitigates such extrapolation effects, is typically performing as good as, or even better, than GPR after sensor re-location. Overall, our results highlight the potential of co-location methods paired with machine learning calibration techniques to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice of calibration variables, and the features of the calibration algorithm.


Author(s):  
Wolfgang Drobetz ◽  
Tizian Otto

AbstractThis paper evaluates the predictive performance of machine learning methods in forecasting European stock returns. Compared to a linear benchmark model, interactions and nonlinear effects help improve the predictive performance. But machine learning models must be adequately trained and tuned to overcome the high dimensionality problem and to avoid overfitting. Across all machine learning methods, the most important predictors are based on price trends and fundamental signals from valuation ratios. However, the models exhibit substantial variation in statistical predictive performance that translate into pronounced differences in economic profitability. The return and risk measures of long-only trading strategies indicate that machine learning models produce sizeable gains relative to our benchmark. Neural networks perform best, also after accounting for transaction costs. A classification-based portfolio formation, utilizing a support vector machine that avoids estimating stock-level expected returns, performs even better than the neural network architecture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew D. Nemesure ◽  
Michael V. Heinz ◽  
Raphael Huang ◽  
Nicholas C. Jacobson

AbstractGeneralized anxiety disorder (GAD) and major depressive disorder (MDD) are highly prevalent and impairing problems, but frequently go undetected, leading to substantial treatment delays. Electronic health records (EHRs) collect a great deal of biometric markers and patient characteristics that could foster the detection of GAD and MDD in primary care settings. We approached the problem of predicting MDD and GAD using a novel machine learning pipeline to re-analyze data from an observational study. The pipeline constitutes an ensemble of algorithmically distinct machine learning methods, including deep learning. A sample of 4,184 undergraduate students completed the study, undergoing a general health screening and completing a psychiatric assessment for MDD and GAD. After explicitly excluding all psychiatric information, 59 biomedical and demographic features from the general health survey in addition to a set of engineered features were used for model training. We assessed the model's performance on a held-out test set and found an AUC of 0.73 (sensitivity: 0.66, specificity: 0.7) and 0.67 (sensitivity: 0.55, specificity: 0.7) for GAD, and MDD, respectively. Additionally, we used advanced techniques (SHAP values) to illuminate which features had the greatest impact on prediction for each disease. The top predictive features for MDD were being satisfied with living conditions and having public health insurance. The top predictive features for GAD were vaccinations being up to date and marijuana use. Our results indicate moderate predictive performance for the application of machine learning methods in detection of GAD and MDD based on EHR data. By identifying important predictors of GAD and MDD, these results may be used in future research to aid in the early detection of MDD and GAD.


2019 ◽  
Vol 19 (292) ◽  
Author(s):  
Nan Hu ◽  
Jian Li ◽  
Alexis Meyer-Cirkel

We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms’ accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient Boosting and Random Forest) strongly outperform other estimators, and Bagging particularly stands out in terms of accuracy. Traditional credit risk models using OLS techniques have the lowest out-of-sample prediction accuracy. The results suggest that the non-linear machine learning methods, especially the ensemble methods, add considerable value to existent credit risk prediction accuracy and enable CDS shadow pricing for companies missing those securities.


Author(s):  
Jing Xu ◽  
Fuyi Li ◽  
André Leier ◽  
Dongxu Xiang ◽  
Hsin-Hui Shen ◽  
...  

Abstract Antimicrobial peptides (AMPs) are a unique and diverse group of molecules that play a crucial role in a myriad of biological processes and cellular functions. AMP-related studies have become increasingly popular in recent years due to antimicrobial resistance, which is becoming an emerging global concern. Systematic experimental identification of AMPs faces many difficulties due to the limitations of current methods. Given its significance, more than 30 computational methods have been developed for accurate prediction of AMPs. These approaches show high diversity in their data set size, data quality, core algorithms, feature extraction, feature selection techniques and evaluation strategies. Here, we provide a comprehensive survey on a variety of current approaches for AMP identification and point at the differences between these methods. In addition, we evaluate the predictive performance of the surveyed tools based on an independent test data set containing 1536 AMPs and 1536 non-AMPs. Furthermore, we construct six validation data sets based on six different common AMP databases and compare different computational methods based on these data sets. The results indicate that amPEPpy achieves the best predictive performance and outperforms the other compared methods. As the predictive performances are affected by the different data sets used by different methods, we additionally perform the 5-fold cross-validation test to benchmark different traditional machine learning methods on the same data set. These cross-validation results indicate that random forest, support vector machine and eXtreme Gradient Boosting achieve comparatively better performances than other machine learning methods and are often the algorithms of choice of multiple AMP prediction tools.


Sign in / Sign up

Export Citation Format

Share Document