scholarly journals Differentiation of CD31-Positive Vascular Endothelial Cells from Organoid Culture of Dental Pulp Stem Cells

2018 ◽  
Vol 43 (2) ◽  
pp. 77-82
Author(s):  
Eun Jin Seo ◽  
◽  
Jae Kyung Park ◽  
Hoim Jeong ◽  
Jung Sook Kang ◽  
...  
2011 ◽  
Vol 23 (3) ◽  
pp. 325-332 ◽  
Author(s):  
V.T. Sakai ◽  
M.M. Cordeiro ◽  
Z. Dong ◽  
Z. Zhang ◽  
B.D. Zeitlin ◽  
...  

Multipotency is a defining characteristic of post-natal stem cells. The human dental pulp contains a small subpopulation of stem cells that exhibit multipotency, as demonstrated by their ability to differentiate into odontoblasts, neural cells, and vascular endothelial cells. These discoveries highlight the fundamental role of stem cells in the biology of the dental pulp and suggest that these cells are uniquely suited for dental pulp tissue-engineering purposes. The availability of experimental approaches specifically designed for studies of the differentiation potential of dental pulp stem cells has played an important role in these discoveries. The objective of this review is to describe the development and characterization of the Tooth Slice/Scaffold Model of Dental Pulp Tissue Engineering. In addition, we discuss the multipotency of dental pulp stem cells, focusing on the differentiation of these cells into functional odontoblasts and into vascular endothelial cells.


2021 ◽  
Vol 41 ◽  
pp. 332-344
Author(s):  
MT Bergamo ◽  
◽  
Z Zhang ◽  
TM Oliveira ◽  
JE Nör

Dental pulp stem cells (DPSCs) constitute a unique group of cells endowed with multipotency, self-renewal, and capacity to regenerate the dental pulp tissue. While much has been learned about these cells in recent years, it is still unclear if each DPSC is multipotent or if unique sub-populations of DPSCs are “primed” to undergo specific differentiation paths. The purpose of the present study was to define whether a sub-population of DPSCs was uniquely primed to undergo vasculogenic differentiation. Permanent-tooth DPSCs or stem cells from human exfoliated deciduous teeth (SHED) were flow-sorted for vascular endothelial growth factor receptor 1 (VEGFR1) and exposed to vasculogenic differentiation medium, i.e., Microvascular-Endothelial-Cell-Growth-Medium-2-BulletKit™ supplemented with 50 ng/mL rhVEGF165 in the presence of 0 or 25 μg/mL anti-human VEGF antibody (bevacizumab; Genentech). In addition, sorted SHED (i.e., VEGFR1high or VEGFR1low) were seeded in biodegradable scaffolds and transplanted into the subcutaneous space of immunodeficient mice. Despite proliferating at a similar rate, VEGFR1high generated more in vitro sprouts than VEGFR1low cells (p < 0.05). Blockade of VEGF signaling with bevacizumab inhibited VEGFR1high-derived sprouts, demonstrating specificity of responses. Similarly, VEGFR1high SHED generated more blood vessels when transplanted into murine hosts than VEGFR1low cells (p < 0.05). Collectively, these data demonstrated that DPSCs contain a unique sub-population of cells defined by high VEGFR1 expression that are primed to differentiate into vascular endothelial cells. These data raise the possibility of purifying stem cells with high vasculogenic potential for regeneration of vascularized tissues or for vascular engineering in the treatment of ischemic conditions.


2018 ◽  
Author(s):  
J. Luzuriaga ◽  
O. Pastor-Alonso ◽  
J.M. Encinas ◽  
F. Unda ◽  
G. Ibarretxe ◽  
...  

SUMMARYDental Pulp Stem Cells (DPSCs) have a demonstrated capacity to acquire neuronal-like phenotypes, suggesting their use in brain cell therapies. In the present work, we wanted to address the phenotypic fate of adult DPSCs cultured in Neurocult media (Stem Cell Technologies), a cell culture medium without serum routinely used for the expansion of adult neural stem cells (NSCs). Our results showed for the first time, that non-genetically modified adult DPSCs cultured with Neurocult generated neurosphere-like dentospheres expressing the NSC markers Nestin and GFAP, but also the vascular endothelial cell marker CD31. One month post-intracranial graft into athymic nude mice, human CD31+ or Nestin+ DPSC-derived cells were found tightly associated with brain blood vessels increasing their laminin staining. These results suggest that DPSCs integrated and contributed to an increased generation of neovasculature within brain tissue and that Neurocult medium constituted a fast and efficient way to obtain endothelial cells from human DPSCs.


2017 ◽  
Vol 97 (2) ◽  
pp. 218-225 ◽  
Author(s):  
J.G. Xu ◽  
T. Gong ◽  
Y.Y. Wang ◽  
T. Zou ◽  
B.C. Heng ◽  
...  

Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp–derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp–derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp–derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp–derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.


2015 ◽  
Vol 21 (3-4) ◽  
pp. 550-563 ◽  
Author(s):  
Waruna Lakmal Dissanayaka ◽  
Kenneth M. Hargreaves ◽  
Lijian Jin ◽  
Lakshman P. Samaranayake ◽  
Chengfei Zhang

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Huafang Wang ◽  
Xiaohang Ye ◽  
Haowen Xiao ◽  
Ni Zhu ◽  
Cong Wei ◽  
...  

Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.


Sign in / Sign up

Export Citation Format

Share Document