scholarly journals Analysis of Chemical Compounds of Gaseous and Particulate Pollutants from the Open Burning of Agricultural HDPE Film Waste

2021 ◽  
Vol 24 (6) ◽  
pp. 585-593
Author(s):  
Tae-Han Kim ◽  
Boo-Hun Choi ◽  
Joongjin Kook

Background and objective: Illegal open-air incineration, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention. Countries around the world have been undertaking studies on the emission of heavy metal substances in fine dust discharged during the incineration process. A precise analytical method is required to examine the harmful effects of particulate pollutants on the human body.Methods: In order to simulate open-air incineration, the infrastructure needed for incineration tests complying with the United States Environmental Protection Agency (EPA) Method 5G was built, and a large-area analysis was conducted on particulate pollutants through automated scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS). For the test specimen, high-density polyethylene (HDPE) waste collected by the DangJin Office located in Choongcheongnam-do was used. To increase the identifiability of the analyzed particles, the incineration experiment was conducted in an incinerator three times after dividing the film waste into 200 g specimens.Results: Among the metal particulate matters detected in the HDPE waste incineration test, transition metals included C (20.8-37.1 wt%) and O (33.7-37.9 wt%). As for other chemical matters, the analysis showed that metal particulate matters such as metalloids, alkali metals, alkaline earth metals, and transition metals reacted to C and C-O. Si, a representative metalloid, was detected at 14.8-20.8 wt%, showing the highest weight ratio except for C and O.Conclusion: In this study, the detection of metal chemicals in incinerated particulate matters was effectively confirmed through SEM-EDS. The results of this study verified that HDPE waste adsorbs metal chemicals originating from soil due to its own properties and deterioration, and that when incinerated, it emits particulate matters containing transition metals and other metals that contribute to the excessive production and reduction of reactive oxygen species.

2016 ◽  
Vol 51 (2) ◽  
pp. 153-166
Author(s):  
Oswaldo Cerón Alfaro ◽  
Alejandra Martín Domínguez ◽  
Fotis Rigas ◽  
Myriam Solís-López ◽  
Rosa-María Ramírez-Zamora

We used an experimental design to determine the best coagulation–flocculation mechanism and the optimal operating conditions for the maximum removal of the natural organic matter fractions (hydrophobic acid (HPOA) and hydrophilic neutral (HPIN)), which are the main factors responsible for irreversible membrane fouling and the generation of disinfection by-products (DBPs). Charge neutralization and sweep mechanisms (SM) were studied using the jar test experiment, and synthetic waters prepared with different hydrophobic/hydrophilic (HPO/HPI) weight ratios by adding model compounds to represent the dissolved organic matter (DOM) fractions. Significant influence factors were identified for both coagulation mechanisms. The SM was the best one for DOM removal independent of the HPO/HPI weight ratio. The SM removed HPOA and HPIN fractions with efficiencies of 87.5–90.5% and 73.6–89.8%, respectively. The dissolved organic carbon (DOC) values of all met the recommendation proposed by the United States Environmental Protection Agency (2 mg total organic carbon (TOC)/L or 1.8 mg DOC/L) for DBPs (<100 μg/L). Furthermore, all effluents met the DOC and silt density index recommended values by membrane suppliers (<3 mg DOC/L and <5%/min, respectively) to minimize fouling potential and to extend the membrane life.


1999 ◽  
Vol 1999 (1) ◽  
pp. 787-792
Author(s):  
Ben Banipal ◽  
Curtis Franklin ◽  
Dean Rotan ◽  
Richard Franklin

ABSTRACT The Lake Oologah area of northeastern Oklahoma contains a large, mature, and declining oil field that has been active since the early 1900s. Many wells have been abandoned, but most of the abandoned wells have not been plugged or maintained according to state requirements. As a result, these wells are leaking crude oil to surrounding soils or directly into navigable waters of the United States. The United States Environmental Protection Agency (EPA), the Oklahoma Corporation Commission (OCC) and Oklahoma Energy Resources Board (OERB) have been working together to address the substantial environmental threats posed by hundreds of leaking oil wells at the approximately 26,000-acre Lake Oologah site. Based on the large area and insufficient well location data, EPA requested that Ecology and Environment, Inc. (E&E) develop an innovative method to identify well and potential surface spill locations. E&E used a state-of-the-art remote-sensing color infrared (CIR) aerial survey to collect digital aerial imagery. The historical aerial data were reviewed to refine the locations of potentially leaking wells identified by the remote-sensing technology. The CIR data were orthorectified to prepare topologically correct maps and further processed using a Geographic Information System (GIS) and thematic mapping software to identify oil-contaminated areas. To confirm the CIR data and overall technical approach developed for the project, EPA and E&E performed ground truthing for a small portion of the site to identify leaking wells and stressed vegetation. Following ground truthing, a specific color spectrum was assigned to these features, and the data were processed to predict the locations of oil contamination sources throughout the site. Based on these results, an overall aerial assessment of site contamination is being developed to identify potentially leaking wells and minimize labor-intensive ground truthing efforts.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 685-698
Author(s):  
J. J. Convery ◽  
J. F. Kreissl ◽  
A. D. Venosa ◽  
J. H. Bender ◽  
D. J. Lussier

Technology transfer is an important activity within the ll.S. Environmental Protection Agency. Specific technology transfer programs such as the activities of the Center for Environmental Research Information, the Innovative and Alternative Technology Program, as well as the Small Community Outreach Program are used to encourage the utilization of cost-effective municipal pollution control technology. Case studies of three technologies including a plant operations diagnostic/remediation methodology, alternative sewer technologies and ultraviolet disinfection are presented. These case studies are presented retrospectively in the context of a generalized concept of how technology flows from science to utilization which was developed in a study by Allen (1977). Additional insights from this study are presented on the information gathering characteristics of engineers and scientists which may be useful in designing technology transfer programs. The recognition of the need for a technology or a deficiency in current practice are important stimuli other than technology transfer for accelerating the utilization of new technology.


2021 ◽  
pp. 074823372110195
Author(s):  
Fatemeh Dehghani ◽  
Fariborz Omidi ◽  
Reza Ali Fallahzadeh ◽  
Bahman Pourhassan

The present work aimed to evaluate the health risks of occupational exposure to heavy metals in a steel casting unit of a steel plant. To determine occupational exposure to heavy metals, personal air samples were taken from the workers’ breathing zones using the National Institute for Occupational Safety and Health method. Noncancer and cancer risks due to the measured metals were calculated according to the United States Environmental Protection Agency procedures. The results indicated that the noncancer risks owing to occupational exposure to lead (Pb) and manganese were higher than the recommended value in most of the workstations. The estimated cancer risk of Pb was also higher than the allowable value. Moreover, the results of sensitivity analysis indicated that the concentration, inhalation rate, and exposure duration were the most influencing variables contributing to the calculated risks. It was thus concluded that the present control measures were not adequate and further improvements were required for reducing the exposure levels.


Author(s):  
Jaewoon Lee ◽  
Sojung Koo ◽  
Jinwoo Lee ◽  
Duho Kim

Considering Mn4+ (3d3)-based cations, various layered oxides (A[AyM1-y]O2, where A and M refer to alkali metals and transition metals, respectively) exhibiting oxygen-redox reactions have been investigated extensively to achieve high...


2021 ◽  
Vol 13 (4) ◽  
pp. 1878
Author(s):  
Alan R. Hunt ◽  
Meiyin Wu ◽  
Tsung-Ta David Hsu ◽  
Nancy Roberts-Lawler ◽  
Jessica Miller ◽  
...  

The National Wild and Scenic Rivers Act protects less than ¼ of a percent of the United States’ river miles, focusing on free-flowing rivers of good water quality with outstandingly remarkable values for recreation, scenery, and other unique river attributes. It predates the enactment of the Clean Water Act, yet includes a clear anti-degradation principle, that pollution should be reduced and eliminated on designated rivers, in cooperation with the federal Environmental Protection Agency and state pollution control agencies. However, the federal Clean Water Act lacks a clear management framework for implementing restoration activities to reduce non-point source pollution, of which bacterial contamination impacts nearly 40% of the Wild and Scenic Rivers. A case study of the Musconetcong River, in rural mountainous New Jersey, indicates that the Wild and Scenic Rivers Act can be utilized to mobilize and align non-governmental, governmental, philanthropic, and private land-owner resources for restoring river water quality. For example, coordinated restoration efforts on one tributary reduced bacterial contamination by 95%, surpassing the TMDL goal of a 93% reduction. Stakeholder interviews and focus groups indicated widespread knowledge and motivation to improve water quality, but resource constraints limited the scale and scope of restoration efforts. The authors postulate that the Partnership framework, enabled in the Wild and Scenic Rivers Act, facilitated neo-endogenous rural development through improving water quality for recreational usage, whereby bottom-up restoration activities were catalyzed via federal designation and resource provision. However, further efforts to address water quality via voluntary participatory frameworks were ultimately limited by the public sector’s inadequate funding and inaction with regard to water and wildlife resources in the public trust.


2015 ◽  
Vol 14 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Katherine Phetxumphou ◽  
Siddhartha Roy ◽  
Brenda M. Davy ◽  
Paul A. Estabrooks ◽  
Wen You ◽  
...  

The United States Environmental Protection Agency mandates that community water systems (CWSs), or drinking water utilities, provide annual consumer confidence reports (CCRs) reporting on water quality, compliance with regulations, source water, and consumer education. While certain report formats are prescribed, there are no criteria ensuring that consumers understand messages in these reports. To assess clarity of message, trained raters evaluated a national sample of 30 CCRs using the Centers for Disease Control Clear Communication Index (Index) indices: (1) Main Message/Call to Action; (2) Language; (3) Information Design; (4) State of the Science; (5) Behavioral Recommendations; (6) Numbers; and (7) Risk. Communication materials are considered qualifying if they achieve a 90% Index score. Overall mean score across CCRs was 50 ± 14% and none scored 90% or higher. CCRs did not differ significantly by water system size. State of the Science (3 ± 15%) and Behavioral Recommendations (77 ± 36%) indices were the lowest and highest, respectively. Only 63% of CCRs explicitly stated if the water was safe to drink according to federal and state standards and regulations. None of the CCRs had passing Index scores, signaling that CWSs are not effectively communicating with their consumers; thus, the Index can serve as an evaluation tool for CCR effectiveness and a guide to improve water quality communications.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


Sign in / Sign up

Export Citation Format

Share Document