Comparative morpho-anatomical studies of the female gonoduct within the Pratylenchidae (Nematoda: Tylenchina)

Nematology ◽  
2003 ◽  
Vol 5 (2) ◽  
pp. 293-306 ◽  
Author(s):  
Gaëtan Borgonie ◽  
Wim Bert ◽  
Ruben Van Gansbeke ◽  
Etienne Geraert ◽  
Myriam Claeys

AbstractThe cellular morphology of the gonoduct of six Pratylenchus species, three Pratylenchoides species, Radopholus similis, Zygotylenchus guevarai, Hirschmanniella loofi and Nacobbus aberrans was revealed by dissection and light microscopy. Except for Nacobbus aberrans, all studied species show an overall similarity in gonoduct construction, i.e., an ovary often ending with a ring of cells, an oviduct formed from two rows of four cells and a 12-celled spermatheca followed by a tricolumella containing 16-24 cells. Pratylenchoides magnicauda and Z. guevarai did not diverge from the other Pratylenchidae in this respect, although their gonoduct differs from that of Amplimerlinius and Meloidogyne, both formerly postulated as related genera. The spermatheca structure observed in N. aberrans has not been reported elsewhere in the Nematoda, although the uterus is similar to that reported within the Heteroderinae and Meloidogyninae and the uterus comprises more than 300 cells, enlarging from a tricolumella to a polycolumella. Transmission electron microscopy of Z. guevarai revealed details of the cytoplasmatic contact between epithelial cells and the germ cells; a finger-like ovarian wall cell extension was found penetrating the oocyte. The oviduct lacks a preformed lumen and comprises eight cells with highly plicated cell membranes. The spermatheca is constructed from flattened wall cells and is followed by columnar uterus cells where evidence of eggshell formation was demonstrated.

Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


1989 ◽  
Vol 35 (12) ◽  
pp. 1081-1086 ◽  
Author(s):  
Byron F. Johnson ◽  
L. C. Sowden ◽  
Teena Walker ◽  
Bong Y. Yoo ◽  
Gode B. Calleja

The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.Key words: flocculation, budding yeast, fission yeast, scanning, transmission.


1994 ◽  
Vol 72 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Georgia L. Hoffman ◽  
Ruth A. Stockey

Several hundred vegetative and fertile specimens of Azolla Lam. have been recovered from the Paleocene Paskapoo Formation at the Joffre Bridge locality (Middle Tiffanian (Ti3) age) near Red Deer, Alberta. The spore complexes closely resemble those of the Paleocene A. stanleyi Jain & Hall, and the vegetative material is referred to that species. The specimens are unusually complete in that the remains of the fragile sporophyte are preserved, commonly with reproductive structures in place. Plants reaching up to 2.25 cm in length consist of alternately branched rhizomes bearing alternate, imbricate, sessile leaves. Leaves are ovate with entire margins, papillate surfaces, and a single midvein. Reproductive structures have been examined using light, scanning, and transmission electron microscopy. This new material is compared with the other Paleocene species for which sporophytes are known and discussed in terms of evolutionary trends for the genus. The specimens suggest that most of the vegetative characteristics of modern Azolla species were established by the middle Paleocene. Key words: Azolla, Salviniaceae, megaspore, massula, ultrastructure, Paleocene.


Phytotaxa ◽  
2015 ◽  
Vol 207 (1) ◽  
pp. 135 ◽  
Author(s):  
Giovanni Raul Bogota ◽  
Carina Hoorn ◽  
Wim Star ◽  
Rob Langelaan ◽  
Hannah Banks ◽  
...  

Sabinaria magnifica is so far the only known species in the recently discovered tropical palm genus Sabinaria (Arecaceae). Here we present a complete description of the pollen morphology of this palm species based on light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We also made SEM-based comparisons of Sabinaria with other genera within the tribe Cryosophileae. Pollen grains of Sabinaria magnifica resemble the other genera in the heteropolar, slightly asymmetric monads, and the monosulcate and tectate exine with perforate surface. Nevertheless, there are some clear differences with Thrinax, Chelyocarpus and Cryosophila in terms of aperture and exine. S. magnifica differs from its closest relative, Itaya amicorum, in the exine structure. This study shows that a combination of microscope techniques is essential for the identification of different genera within the Cryosophileae and may also be a necessary when working with other palynologically less distinct palm genera. 


1987 ◽  
Vol 94 ◽  
Author(s):  
S. W. Lu ◽  
C. W. Nieh ◽  
J. J. Chu ◽  
L. J. Chen

ABSTRACTThe influences of implantation impurities, including BF2, B, F, As and P on the formation of epitaxial NiSi2 in nickel thin films on ion-implanted silicon have been investigated by transmission electron microscopy.The presence of BF2, B, and F atoms was observed to promote the epitaxial growth of NiSi2 at low temperatures. Little or no effect on the formation of NiSi2 was found in samples implanted with As or P ions.The results indicated that the influences of the implantation impurities are not likely to be electronic in origin. Good correlation, on the other hand, was found between the atomic size factor and resulting stress and NiSi2 epitaxy at low temperatures.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1804
Author(s):  
Cesar A. Sciammarella ◽  
Federico M. Sciammarella ◽  
Luciano Lamberti

Macroscopic behavior of materials depends on interactions of atoms and molecules at nanometer/sub-nanometer scale. Experimental mechanics (EM) can be used for assessing relationships between the macro world and the atomic realm. Theoretical models developed at nanometric and sub-nanometric scales may be verified using EM techniques with the final goal of deriving comprehensive but manageable models. Recently, the authors have carried out studies on EM determination of displacements and their derivatives at the macro and microscopic scales. Here, these techniques were applied to the analysis of high-resolution transmission electron microscopy patterns of a crystalline array containing dislocations. Utilizing atomic positions as carriers of information and comparing undeformed and deformed configurations of observed area, displacements and their derivatives, as well as stresses, have been obtained in the Eulerian description of deformed crystal. Two approaches are introduced. The first establishes an analogy between the basic crystalline structure and a 120° strain gage rosette. The other relies on the fact that, if displacement information along three directions is available, it is possible to reconstruct the displacement field; all necessary equations are provided in the paper. Remarkably, the validity of the Cauchy-Born conjecture is proven to be correct within the range of observed deformations.


Author(s):  
Sam Ick Son ◽  
Su Jin Chung

AbstractThe relation between the domains and domain boundaries of multiple twins of diamond were investigated by the electron back scatter diffraction (EBSD) method and high resolution transmission electron microscopy (HRTEM). Multiple twinned diamonds have two types of icosahedral morphologies. One is an almost perfect icosahedron in which all of the faces are {111} faces. The other is a hollow icosahedron similar to one of the Kepler-Poinsot polyhedrons. The indented negative trigonal faces are formed from the {100} faces of a cube. It was confirmed that the convex edges of the twinned icosahedron corresponded to the Σ3 boundaries, whereas the concave edges were assigned to the Σ9 twin boundary by means of the EBSD analysis.It was confirmed from the HRTEM image that a series of dislocations compensate for the mismatching angle which occurs after five successive twinning.


2007 ◽  
Vol 119 ◽  
pp. 111-114 ◽  
Author(s):  
Yun Soo Lim ◽  
Hong Pyo Kim ◽  
Man Kyo Jung ◽  
Joung Soo Kim

The precipitates in the base metal and the fusion zone of an Alloy 600/182 weld were characterized through a transmission electron microscopy. Precipitates in the Alloy 600 base metal were identified as Cr7C3. On the other hand, (Nb,Ti)C, Al-rich and Ti-rich oxides were found on the dendritic interfaces, and tiny Cr-rich M23C6 were distributed on the grain boundaries in the Alloy 182 fusion zone.


1998 ◽  
Vol 72 (3) ◽  
pp. 257-266 ◽  
Author(s):  
M.N. Patel ◽  
D.J. Wright

AbstractThe ultrastructure of the cuticle of infective juveniles (IJs) of Steinernema carpocapsae (newly emerged and 80-day-old) and newly emerged IJs of S. riobravis, S. feltiae and S. glaseri was examined using transmission electron microscopy. The thickness of four distinctive layers of the cuticle was measured: epicuticle, cortical and median layer, striated layer and fibrous mat. The thickness of the cuticle was correlated with the size of the IJ. In the case of newly emerged IJs, the smallest species, S. carpocapsae, had a cuticle thickness of c. 270 nm compared with c. 460 nm for S. glaseri, the largest of the four species. The overall thickness of the cuticle or the thickness of the cuticle layers was not correlated with the ability of the IJs of the four species to survive desiccation per se. The major difference between newly emerged IJs of the four species was that S. carpocapsae had a proportionately thicker striated layer compared with the other three species. The significance of this is not known but it may be an adaptation involving the nictation behaviour of this species. A substantial change was observed in the cuticle of aged (80-day-old) IJs of S. carpocapsae, whereby the thickness of the cortical and median layer increased by more than 100% and the overall thickness of the cuticle increased by about 50%. Two possible explanations for this increase are: (i) new material was synthesized; or (ii) the fluid content of this layer increased due to an increase in the permeability of the outer layers of the cuticle. The ultrastructure of the sheaths of S. feltiae and S. glaseri was also examined and, apart from S. glaseri having a thicker sheath, the structure of the sheath in both species was similar, with the epicuticle and striated layer still visible.


Sign in / Sign up

Export Citation Format

Share Document