scholarly journals Genetic and ecological differentiation between the butterfly sisterspecies Colias alfacariensis and Colias hyale

2002 ◽  
Vol 71 (4) ◽  
pp. 131-139 ◽  
Author(s):  
Daniel F.R. Cleary ◽  
Henri Descimon ◽  
Steph B.J. Menken

Clear habitat separation between the sister species Colias alfacariensis and C. hyale is shown when occurring sympatrically. Colias hyale is found more often in moist cultivated pastures while Colias alfacariensis is more abundant in dry uncultivated habitat. Out of a total of 16 loci, no diagnostic loci were found between C. alfacariensis and C. hyale, and both species shared most major polymorphisms. Exceptions were the marked differences in allele frequencies at the HK locus and only C. hyale, but not C. alfacariensis was further invariable at the GOT2 locus, which is usually highly polymorphic in the Pieridae. Colias hyale has a significantly lower level of heterozygosity than its sister species C. alfacariensis. In Colias alfacariensis heterozygosity is highest in the Alps and lowest in the low-lying region of Northern France, Both species show high levels of gene flow over a large geographic area. Within C. alfacariensis, but not in C. hyale, the FST value of the PGI locus is significantly different from zero effectively separating the species into populations with high levels of the ’ b’ allele to the west and North, and low levels of the allele in the Alps and Italy. This could point to selection within the PGI locus in line with the well established pattern of selection at the PGI locus in other species of Colias. Glaciations have been an important force in shaping the evolutionary history of European biota, leading to extinction, but also allowing new species to evolve into the newly available land as the ice sheets retreated. The genetic and distributional pattern found between both Colias species suggests that habitat shifts and subsequent adaptation during glaciations could have played an important role in their speciation.

Balcanica ◽  
2014 ◽  
pp. 15-23
Author(s):  
Nikola Tasic

In the history of the central Balkans prior to the Roman conquest migrations of people had manifold importance. The recognition of these migrations has been the basis for distinguishing between different periods of prehistory. Various analyses of the material culture offer information on the social contact between the invaders and the autochtonous populations. They reveal details of the transfer of elements of culture and technological knowledge from one region to another. Of particular significance in this respect are migrations over vast territories, sometimes from as far as the Ural mountains in the east, the Alps in the west and the Pindus in Greece to the south. Investigations into the models of the migrations open up possibilities for determining the variation in, and different forms of, human movement from one geographic area to another.


2020 ◽  
Vol 66 (3-4) ◽  
pp. 142-150
Author(s):  
Jessica Worthington Wilmer ◽  
Andrew P. Amey ◽  
Carmel McDougall ◽  
Melanie Venz ◽  
Stephen Peck ◽  
...  

Sclerophyll woodlands and open forests once covered vast areas of eastern Australia, but have been greatly fragmented and reduced in extent since European settlement. The biogeographic and evolutionary history of the biota of eastern Australia’s woodlands also remains poorly known, especially when compared to rainforests to the east, or the arid biome to the west. Here we present an analysis of patterns of mitochondrial genetic diversity in two species of Pygopodid geckos with distributions centred on the Brigalow Belt Bioregion of eastern Queensland. One moderately large and semi-arboreal species, Paradelma orientalis, shows low genetic diversity and no clear geographic structuring across its wide range. In contrast a small and semi-fossorial species, Delma torquata, consists of two moderately divergent clades, one from the ranges and upland of coastal areas of south-east Queensland, and other centred in upland areas further inland. These data point to varying histories of geneflow and refugial persistance in eastern Australia’s vast but now fragmented open woodlands. The Carnarvon Ranges of central Queensland are also highlighted as a zone of persistence for cool and/or wet-adapted taxa, however the evolutionary history and divergence of most outlying populations in these mountains remains unstudied.


2016 ◽  
Vol 26 (2) ◽  
pp. 639-652 ◽  
Author(s):  
Moisés A. Bernal ◽  
Michelle R. Gaither ◽  
W. Brian Simison ◽  
Luiz A. Rocha

Parasitology ◽  
2017 ◽  
Vol 144 (13) ◽  
pp. 1752-1762 ◽  
Author(s):  
SCOTT P. LAWTON ◽  
LAUREN I. BOWEN ◽  
AIDAN M. EMERY ◽  
GÁBOR MAJOROS

SUMMARYHigh levels of molecular diversity were identified in mitochondrial cytochrome c oxidase (cox1) gene sequences of Schistosoma turkestanicum from Hungary. These cox1 sequences were all specific to Hungary which contrasted with the low levels of diversity seen in the nuclear internal transcribed spacer region (ITS) sequences, the majority of which were shared between China and Iran isolates. Measures of within and between host molecular variation within S. turkestanicum showed there to be substantial differences in molecular diversity, with cox1 being significantly more diverse than the ITS. Measures of haplotype frequencies revealed that each host contained its own subpopulation of genetically unique parasites with significant levels of differentiation. Pairwise mismatch analysis of cox1 sequences indicated S. turkestanicum populations to have a bimodal pairwise difference distribution and to be stable unlike the ITS sequences, which appeared to have undergone a recent population expansion event. Positive selection was also detected in the cox1 sequences, and biochemical modelling of the resulting protein illustrated significant mutational events causing an alteration to the isoelectric point of the cox1 protein, potentially altering metabolism. The evolutionary signature from the cox1 indicates local adaptation and long establishment of S. turkestanicum in Hungary with continual introgression of nuclear genes from Asian isolates. These processes have led to the occurrence of mito-nuclear discordance in a schistosome population


2010 ◽  
Vol 84 (5) ◽  
pp. 821-847 ◽  
Author(s):  
Robert M. Finks

New and old species and genera of the family Guadalupiidae (spherulitic hypercalcified demosponges of the order Agelasida) are described or redescribed from the West Texas Permian. The entire family is reviewed and observations are made on the epibionts, growth patterns, functional morphology, ecological relationships, morphologic variability, modular structure, and evolutionary history of these largely reef-dwelling sponges. The stratigraphic distribution of species is also noted; many are limited and can define zones. The new genera Exovasa and Incisimura and the new species Guadalupia auricula, G. cupulosa, G. ramescens, G. microcamera, G. vasa, Cystothalamia megacysta, Lemonea simplex, Incisimura bella, and Exovasa cystauletoides are described. Almost all previously published taxa are redescribed and in some cases redefined. The Guadalupiidae are unique among hypercalcified sponges in having a modular thalamid layer (thalamidarium) covered on the exhalant surface by a non-modular stromatoporoid-like layer (trabecularium).


Author(s):  
Thomas C. Nelson ◽  
Angela M. Stathos ◽  
Daniel D. Vanderpool ◽  
Findley R. Finseth ◽  
Yao-wu Yuan ◽  
...  

AbstractInferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson’s D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.Author SummaryAdaptive radiations, which involve both divergent evolution of new traits and recurrent trait evolution, provide insight into the processes that generate and maintain organismal diversity. However, rapid radiations also generate particular challenges for inferring the evolutionary history and mechanistic basis of adaptation and speciation, as multiple processes can cause different parts of the genome to have distinct phylogenetic trees. Thus, inferences about the mode and timing of divergence and the causes of parallel trait evolution require a fine-grained understanding of the flow of genomic variation through time. In this study, we used genome-wide sampling of thousands of genes to re-construct the evolutionary histories of a model plant radiation, the monkeyflowers of Mimulus section Erythranthe. Work over the past half-century has established the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated, as are three other species in the section) as textbook examples of both rapid speciation via shifts in pollination syndrome and convergent evolution of floral syndromes. Our phylogenomic analyses re-write both of these stories, placing M. cardinalis in a clade with other hummingbird-pollinated taxa and demonstrating that abundant introgression between ancestral lineages as well as in areas of current sympatry contributes to the real (but misleading) affinities between M. cardinalis and M. lewisii. This work illustrates the pervasive influence of gene flow and introgression during adaptive radiation and speciation, and underlines the necessity of a gene-scale and genome-wide phylogenomics framework for understanding trait divergence, even among well-established species.


2021 ◽  
Author(s):  
Marlene Haider ◽  
Martin P. Schilling ◽  
Markus H. Moest ◽  
Florian M. Steiner ◽  
Birgit C. Schlick-Steiner ◽  
...  

AbstractReconstruction of species histories is a central aspect of evolutionary biology. Patterns of genetic variation within and among populations can be leveraged to elucidate evolutionary processes and demographic histories. However, interpreting genetic signatures and unraveling the contributing processes can be challenging, in particular for non-model organisms with complex reproductive modes and genome organization. One way forward is the combined consideration of patterns revealed by different molecular markers (nuclear vs. mitochondrial) and types of variants (common vs. rare) that differ in their age, mode and rate of evolution. Here, we applied this approach to Machilis pallida (Archaeognatha), an Alpine jumping bristletail considered parthenogenetic and triploid. We generated de-novo transcriptome and mitochondrial assemblies to obtain high-density data to investigate patterns of mitochondrial and common and rare nuclear variation in 17 M. pallida individuals sampled across the Alps from all known populations. We find that the different variant types capture distinct aspects of the evolutionary history and discuss the observed patterns in the context of parthenogenesis, polyploidy and survival during glaciation. This study highlights the potential of different variant types to unravel complex evolutionary scenarios and the suitability of M. pallida and the genus Machilis as a study system for the evolution of sexual strategies and polyploidization during environmental change. We also emphasize the need for further research which will be stimulated and facilitated by these newly generated resources and insights.


2003 ◽  
Vol 9 ◽  
pp. 11-36 ◽  
Author(s):  
Lisa E. Park ◽  
R. Douglas Ricketts

The Ostracoda are one of the most diverse arthropod groups alive today; they also have a tremendous fossil record. Because of their widespread environmental distributions, small size and carbonate shell, they have become extremely useful biostratigraphic and paleoenvironmental proxy indicators, particularly in nonmarine environments. Despite this utility, little is known about the phylogenetic history of this important group. We reconstructed a phylogenetic history of the major orders and suborders of Ostracoda in order to test the legitimacy of current classification schemes, determine if it is possible for ostracodes to have a Precambrian origin, and test the fidelity of some of the major morphological characters that have documented trends of either increased complexity, such as the hinge and marginal pore canals, or reduction in segments, such as the adductor muscle scar.In our phylogenetic analysis to test taxonomic fidelity, we coded seven morphological hard part characters for nine taxa from the orders Archaeocopida, Leperditicopida, Palaeocopida, Podocopida, and Myodocopida. A parsimony analysis was performed using PAUP (v. 4.0) yielding 4 trees of 17 steps with low levels of homoplasy and a strong phylogenetic signal. A majority rule consensus tree indicates there is not complete agreement between the standard classification scheme and the phylogeny produced by the characters used to establish the classification. In our complete analysis of Ostracoda, we coded 28 morphological characters that included 14 hard part and 14 soft part characters for twelve taxa that include the Archaeocopida, Leperditicopida, Podocopida, and Myodocopida. A parsimony analysis was completed using PAUP (v. 4.0) yielding 1 tree of 125 steps with low levels of homoplasy and a strong phylogenetic signal. An unrooted analysis of this character set has the Cambrian Archaeopodocopida and the Ordovician-Devonian Leperditicopida in an unresolved polytomy with much younger groups such as the Myodocopina, suggesting a much deeper split in the lineage and a possible Precambrian origin for the Ostracoda. Testing the various character state acquisitions over the tree indicates that the hinge does not show an increase in complexity within a phylogenetic context, while the adductor muscle scars do show a significant trend of decrease in complexity across the tree topology. The marginal pore canals, which are functionally tied to osmoregulation as well as carapace secretion, are extremely homoplastic, indicating that this character, which is related to nonmarine invasions and tolerances, was acquired many times throughout the evolutionary history of Ostracoda.By creating an evolutionary framework for the Ostracoda such as is presented here, we can further assess character state acquisition, and how it functionally and evolutionarily relates to ostracode paleoenvironmental tolerances. The framework will not only allow us to understand the overall evolution ofthis group but will also allow us to compare the history of the ostracode clade with other groups that also have a history ofmarine and nonmarine transitions.


Psych ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 35-43
Author(s):  
James Flynn

Rushton believed not only that East Asians, whites, and blacks could be ranked in that order for desirable traits but also that the black/white IQ gap is predominantly genetic in origin. Concerning the first, he relied on the “ice ages hypothesis”to show that the evolutionary history of the three races had varied as East Asians were subjected to the most demanding environment (north of the Himalayas), whites to the next most demanding (north of the Alps), and blacks to the least demanding (Africa). As to the second, he appealed to arguments based on the method of correlated vectors (Jensen effects) and regression to the mean. To assess his contribution I argue: (1) That the racial ranking for desirable traits is not as tidy as it seems; (2) That the ice ages hypothesis has been falsified; (3) That the black/white Q gap is more likely to be environmental, with black American subculture as the culprit; and (4) That appeals to correlated vectors and regression cannot disentangle genetic and environmental causes.


2000 ◽  
Vol 174 ◽  
pp. 226-232
Author(s):  
Jack W. Sulentic

AbstractWe review old and new observational data for Stephan’s Quintet (SQ), the most famous compact galaxy group. Recently obtained multi-wavelength data has helped to clarify the past and present evolutionary history of this group. If SQ is typical of the compact group phenomenon, then: 1) the groups evolve slowly, resisting merging, due to the injection of energy from high velocity intruders and 2) show low levels of enhanced star formation because individual component ISM’s are quickly stripped via intruder collisions with resultant gas either too hot or cold/diffuse to form many stars. Infall of residual near nuclear gas may also stimulate the development of AGN.


Sign in / Sign up

Export Citation Format

Share Document