Detecting Sudden Changes in Dynamic Rotation Displays

2010 ◽  
Vol 23 (3) ◽  
pp. 241-261
Author(s):  
Rachael Thiel ◽  
J. Timothy Petersik

AbstractFour experiments and controls were run in order to determine the ability of the visual system to detect slight changes in three-dimensional (3D) rotating stimuli in comparison to two-dimensional (2D) controls. A small number of observers (between 5 and 8) viewed computerized displays of pixel-defined transparent rotating spheres or circular patches of pixels drifting linearly in opposite directions. Halfway through the circuit of rotation a letter was briefly displayed and the rotation continued with some change introduced. Our results showed that for horizontal shifts of the stimulus on the X-axis, changes in the axis of rotation, and additions/deletions of pixels, observers were better at detecting the changes associated with 3D motion than 2D motion. There was no good 2D control for approaching and receding stimuli, but on the basis of other results it was concluded that 3D movement had no advantage. It is suggested that rotation in 3D is more readily monitored by the visual system than simultaneous 2D motions in opposite directions.

Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 28-38
Author(s):  
Josep M. Oliva-Enrich ◽  
Ibon Alkorta ◽  
José Elguero ◽  
Maxime Ferrer ◽  
José I. Burgos

By following the intrinsic reaction coordinate connecting transition states with energy minima on the potential energy surface, we have determined the reaction steps connecting three-dimensional hexaborane(12) with unknown planar two-dimensional hexaborane(12). In an effort to predict the potential synthesis of finite planar borane molecules, we found that the reaction limiting factor stems from the breaking of the central boron-boron bond perpendicular to the C2 axis of rotation in three-dimensional hexaborane(12).


Author(s):  
Helena Bidnichenko

The paper presents a method for geometric modelling of a four-dimensional ball. For this, the regularities of the change in the shape of the projections of simple geometric images of two-dimensional and three-dimensional spaces during rotation are considered. Rotations of a segment and a circle around an axis are considered; it is shown that during rotation the shape of their projections changes from the maximum value to the degenerate projection. It was found that the set of points of the degenerate projection belongs to the axis of rotation, and each n-dimensional geometric image during rotation forms a body of a higher dimension, that is, one that belongs to (n + 1) -dimensional space. Identified regularities are extended to the four-dimensional space in which the ball is placed. It is shown that the axis of rotation of the ball will be a degenerate projection in the form of a circle, and the ball, when rotating, changes its size from a volumetric object to a flat circle, then increases again, but in the other direction (that is, it turns out), and then in reverse order to its original position. This rotation is more like a deformation, and such a ball of four-dimensional space is a hypersphere. For geometric modelling of the hypersphere and the possibility of its projection image, the article uses the vector model proposed by P.V. Filippov. The coordinate system 0xyzt is defined. The algebraic equation of the hypersphere is given by analogy with the three-dimensional space along certain coordinates of the center a, b, c, d. A variant of hypersection at t = 0 is considered, which confirms by equations obtaining a two-dimensional ball of three-dimensional space, a point (a ball of zero radius), which coincides with the center of the ball, or an imaginary ball. For the variant t = d, the equation of a two-dimensional ball is obtained, in which the radius is equal to R and the coordinates of all points along the 0t axis are equal to d. The variant of hypersection t = k turned out to be interesting, in which the equation of a two-dimensional sphere was obtained, in which the coordinates of all points along the 0t axis are equal to k, and the radius is . Horizontal vector projections of hypersection are constructed for different values of k. It is concluded that the set of horizontal vector projections of hypersections at t = k defines an ellipse.  


Author(s):  
Sophie Roberts ◽  
Sharon Dixon

Gait analysis describes the process of systematically quantifying mechanical aspects of walking or running to aid in the examination of a patient/client. In the publication Gait Analysis: An Introduction, Whittle (2002) identifies the eye as being the first tool in this assessment, with technology being available to supplement this visual analysis. Technological analysis tools include two-dimensional (2D) video, three-dimensional (3D) motion analysis, pressure plates, and pressure insoles. The application of technology has increased our understanding of human gait substantially. This chapter introduces the basic tools of gait analysis and highlights specific considerations when selecting appropriate tools for the assessment of walking gait. Details of running gait are provided in Chapter 1.8....


Vision ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 64
Author(s):  
Martin Lages ◽  
Suzanne Heron

Like many predators, humans have forward-facing eyes that are set a short distance apart so that an extensive region of the visual field is seen from two different points of view. The human visual system can establish a three-dimensional (3D) percept from the projection of images into the left and right eye. How the visual system integrates local motion and binocular depth in order to accomplish 3D motion perception is still under investigation. Here, we propose a geometric-statistical model that combines noisy velocity constraints with a spherical motion prior to solve the aperture problem in 3D. In two psychophysical experiments, it is shown that instantiations of this model can explain how human observers disambiguate 3D line motion direction behind a circular aperture. We discuss the implications of our results for the processing of motion and dynamic depth in the visual system.


Some years ago it was pointed out by Prof. Proudman that all slow steady motions of a rotating liquid must be two-dimensional. If the motion is produced by moving a cylindrical object slowly through the liquid in such a way that its axis remains parallel to the axis of rotation, or if a two-dimensional motion is conceived as already existing, it seems clear that it will remain two-dimensional. If a slow three-dimensional motion is produced, then it cannot be a steady one. On the other hand, if an attempt is made to produce a slow steady motion by moving a three-dimensional body with a small uniform velocity (relative to axes which rotate with the fluid) three possibilities present themselves:— ( a ) The motion in the liquid may never become steady, however long the body goes on moving. ( b ) The motion may be steady but it may not be small in the neighbourhood of the body. ( c ) The motion may be steady and two-dimensional. In considering these three possibilities it seems very unlikely that ( a ) will be the true one. In an infinite rotating fluid the disturbance produced by starting the motion of the body might go on spreading out for ever and steady motion might never be attained, but if the body were moved steadily in a direction at right angles to the axis of rotation, and if the fluid were contained between parallel planes also perpendicular to the axis of rotation, it seems very improbable that no steady motion satisfying the equations of motion could be attained. There is more chance that ( b ) may be true. A class of mathematical expressions representing the steady motion of a sphere along the axis of a rotating liquid has been obtained. This solution of the problem breaks down when the velocity of the sphere becomes indefinitely small, in the sense that it represents a motion which does not decrease as the velocity of the sphere decreases. It seems unlikely that such a motion would be produced under experimental conditions.


Perception ◽  
2019 ◽  
Vol 48 (6) ◽  
pp. 500-514
Author(s):  
Yuki Kobayashi ◽  
Kazunori Morikawa

The human visual system can extract information on surface reflectance (lightness) from light intensity; this, however, confounds information on reflectance and illumination. We hypothesized that the visual system, to solve this lightness problem, utilizes the internally held prior assumption that illumination falls from above. Experiment 1 showed that an upward-facing surface is perceived to be darker than a downward-facing surface, proving our hypothesis. Experiment 2 showed the same results in the absence of explicit illumination cues. The effect of the light-from-left prior assumption was not observed in Experiment 3. The upward- and downward-facing surface stimuli in Experiments 1 and 2 showed no difference in a two-dimensional configuration or three-dimensional structure, and the participants’ perceived lightness appeared to be affected by the observers’ prior assumption that illumination is always from above. Other studies have not accounted for this illusory effect, and this study’s finding provides additional insights into the study of lightness perception.


Author(s):  
Lydia M. Maniatis

Why do some two-dimensional (2D) drawings look three-dimensional (3D)? The answer is because their projection on our retinas is consistent with a 3D percept that has a “better” shape and orientation than the 2D figure. Whenever a retinal projection is interpreted by the visual system as the projection of a surface that is not frontoparallel (i.e., not parallel to the retinal surface), then the retinal image will differ in shape from the source of the projection in (a) the sizes of its internal angles and/or (b) the relative extents of its surfaces. The latter differences arise because, when an extent is assumed to be receding, then it must also be assumed to have undergone foreshortening in the projection. Using pictures, we can show that the visual system likes more, rather than less, mirror symmetry and a vertical axis of symmetry more than a tilted one.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Sign in / Sign up

Export Citation Format

Share Document