PREDICTION OF TRACHEID LENGTH AND DIAMETER IN WHITE SPRUCE (PICEA GLAUCA)

IAWA Journal ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 186-207 ◽  
Author(s):  
Cyriac S. Mvolo ◽  
Ahmed Koubaa ◽  
Maurice Defo ◽  
Jean Beaulieu ◽  
Martin-Claude Yemele ◽  
...  

The establishment of patterns of radial and longitudinal variations and the development of models to predict the wood anatomical properties, especially from juvenile wood, are of interest for both wood industry and researchers. Linear regressions were used to predict whole-tree, breast height and mature tracheid length and diameter in white spruce (Picea glauca (Moench) Voss) and the WBE model was used to predict the variation of tracheid diameter. Tracheid length and diameter increased from pith to bark. Tracheid length decreased, while tracheid diameter increased from apex to lower heights. Cambial age was the most important predictor of tracheid length. The final tracheid length models with either a log transformation or a third-order polynomial of cambial age explained 82% of the variation in the whole-tree tracheid length. At breast height, 83% of the variation in the whole tracheid length was explained using the juvenile value at a cambial age of 3 years. Up to 87% of the variation was explained by the model, including the average value of juvenile wood. However, mature wood tracheid length at breast height could not be predicted from juvenile wood. Distance from the apex predicted the tracheid widening in outer rings but failed to predict tracheid expansion of samples collected at fixed cambial ages. The WBE explained 86% of conduit widening in the outer rings. The sampling strategy, i.e. collecting samples longitudinally at a fixed cambial age vs. at a fixed calendar year is important in predicting tracheid diameter.

2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 589 ◽  
Author(s):  
Cyriac S. Mvolo ◽  
Ahmed Koubaa ◽  
Jean Beaulieu ◽  
Alain Cloutier ◽  
Maurice Defo ◽  
...  

We examined phenotypic relationships among radial growth-related, physical (i.e., related to wood density), and anatomical (i.e., related to tracheid dimensions) wood properties in white spruce (Picea glauca (Moench) Voss), in order to determine the strength and significance of their correlations. Additionally, principal component analysis (PCA) was used to establish if all of the properties must be measured and to determine the key properties that can be used as proxies for the other variables. Radial growth-related and physical properties were measured with an X-ray densitometer, while anatomical properties were measured with a Fiber Quality Analyzer. Fifteen wood properties (tracheid length (TL) and diameter (TD), earlywood tracheid length (ETL) and diameter (ETD), latewood tracheid length (LTL) and diameter (LTD), ring width (RW), ring area (RA), earlywood width (EWW), latewood width (LWW), latewood proportion (LWP), ring density (RD), intra-ring density variation, earlywood density (EWD), and latewood density (LWD)) were assessed. Relationships were evaluated at intra-ring and inter-ring levels in the juvenile wood (JW) and mature wood (MW) zones. Except for a few cases when mature tracheid diameter (TD) was involved, all intra-ring anatomical properties were highly and significantly correlated. Radial growth properties were correlated, with stronger relationships in MW compared to JW. Physical properties were often positively and significantly correlated in both JW and MW. A higher earlywood density coupled with a lower latewood density favored wood uniformity, i.e., the homogeneity of ring density within a growth ring. Managing plantations to suppress trees growth during JW formation, and enhancing radial growth when MW formation starts will favor overall wood quality. In order, RW-EWW-RA, TL-ETL-LTL, and RD-EWD-LWP are the three clusters that appeared in the three wood zones, the whole pith-to-bark radial section, the juvenile wood zone, and the mature wood zone.


1969 ◽  
Vol 45 (3) ◽  
pp. 184-186 ◽  
Author(s):  
L. Heger

Sets of site-index curves were prepared from stem analyses of white spruce (Picea glauca (Moench) Voss) and black spruce (P. mariana (Mill.) BSP.) from various regions in the boreal forest of Canada. Ordinates of the site-index curves, computed for 5-year breast-height age intervals up to 75 years, and for 10-foot site-index intervals up to 70 feet, were compared within the species for the same values of site index and age. For breast-height ages below 55 years and for site index below 70 feet, the maximum absolute difference among the ordinates did not exceed 2.0 feet in white spruce, and 1.6 feet in black spruce; the corresponding average deviations were 0.75 and 0.80 feet. For breast-height ages above 55 years, these differences increased with age and, at 75 years, reached 8.8 feet in white spruce, and 3.8 feet in black spruce; the corresponding average deviations were 4.40 and 1.53 feet.


Forests ◽  
2015 ◽  
Vol 6 (12) ◽  
pp. 183-202 ◽  
Author(s):  
Cyriac Mvolo ◽  
Ahmed Koubaa ◽  
Jean Beaulieu ◽  
Alain Cloutier ◽  
Marc Mazerolle

1958 ◽  
Vol 34 (1) ◽  
pp. 39-47 ◽  
Author(s):  
J. R. Blais

The relationship between spruce budworm defoliation and radial growth at breast height for balsam fir and white spruce trees of merchantable size was studied in various stands in northwestern Ontario. Defoliation was recorded yearly for these stands from the beginning of the infestation, and radial growth measurements were obtained from increment cores. The first year of radial growth suppression was calculated by comparing the growth of the affected species with that of jack pine and red pine trees by means of a growth-ratio technique. Apparent suppression in balsam fir and white spruce varied between stands, and, generally, occurred at the earliest in the second year and at the latest in the fourth year of severe defoliation. A wide ring at the base of the tree coinciding with the first year of suppression as reported by Craighead was non-existent.


1985 ◽  
Vol 61 (6) ◽  
pp. 489-493 ◽  
Author(s):  
Eugene I. C. Wang ◽  
Michael M. Micko ◽  
Ted Mueller

Growth rate, wood relative density and tracheid length variation were examined for three species: black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and tamarack (Larix laricina (Du Roi) K. Koch), from two drained wetland sites of north-central Alberta. Increased rates in radial and volume growths were noted for tamarack, white spruce and to a lesser extent, black spruce. The increases were particularly remarkable in younger trees. Accompanying the rapid growth, wood relative density and tracheid length tend to decrease after drainage, at least for a period of several years. In certain trees, the marked decreases in wood relative density might affect the end use of the trees. Key words: drainage, radial growth, volume growth, wood relative density, tracheid length.


2010 ◽  
Vol 40 (4) ◽  
pp. 703-715 ◽  
Author(s):  
Patrick Lenz ◽  
Alain Cloutier ◽  
John MacKay ◽  
Jean Beaulieu

We investigated the genetic control of wood properties as a function of cambial age to enable improvement of juvenile wood attributes in white spruce ( Picea glauca (Moench) Voss). Increment cores were taken from 375 trees randomly selected from 25 open-pollinated families in a provenance–progeny trial repeated on three sites. High-resolution pith-to-bark profiles were obtained for microfibril angle (MFA), modulus of elasticity (MOE), wood density, tracheid diameter and cell wall thickness, fibre coarseness, and specific fibre surface with the SilviScan technology. Heritability estimates indicated that genetic control of cell anatomy traits and wood density increased with cambial age, whereas the genetic control of MFA and MOE remained relatively low across growth rings. Wood density, radial cell diameter, cell wall thickness, and specific fibre surface were highly heritable, indicating that significant genetic gains could be expected in tree improvement programs, although cambial age at selection may strongly influence the magnitude of realized gains. In contrast, growth-related properties, such as ring width, core length, and tree height, gave weak or nonsignificant heritability estimates. Adverse correlations between mechanical strength and properties related to paper quality suggest that breeding strategies must incorporate both types of traits to improve white spruce wood quality for different end uses.


2016 ◽  
Vol 46 (10) ◽  
pp. 1235-1245 ◽  
Author(s):  
Derek F. Sattler ◽  
James D. Stewart

We examined modulus of elasticity (MoE) derived from SilviScan in white spruce (Picea glauca (Moench) Voss) at the site, tree, and ring levels across the Boreal Plains ecozone in Canada. Area-weighted averages of MoE were calculated for juvenile and mature wood and were examined in relation to radial growth, climate, and location. Correlations indicated that there was a negative relationship between radial growth and MoE in the juvenile wood that was detectable at the site and tree levels; however, the relationship weakened in the mature wood, particularly at the site level. Few climate variables were correlated with MoE in juvenile wood, whereas multiple summer and fall climate variables showed a significant correlation with MOE in mature wood. A model describing the radial profile of MoE explained 58% of the variability in MoE, with 10% of the random variability attributed to between-tree differences. Elevation and summer water balance accounted for nearly all of the between-site variability. A decrease in MoE with increasing elevation was noted and has been previously linked to a decrease in cell wall thickness due to a shorter growing season at higher elevations. Integration of the MoE profile model into an individual-tree growth and yield simulator is the next logical step.


2018 ◽  
Vol 64 (No. 3) ◽  
pp. 101-107
Author(s):  
Foti Dafni ◽  
Passialis Costas ◽  
Voulgaridis Elias ◽  
Skaltsoyiannes Apostolos ◽  
Tsaktsira Maria

Wood density, tracheid length and growth rate were measured in Aleppo pine scions, 21–23 years old, and in Brutia pine rootstocks. In regard to the relationship between cambial age and dry density the results showed that the density increased with cambial age in both scions and rootstocks while the differences between Aleppo pine and Brutia pine were small. The relationship between cambial age and tracheid length showed an increase of tracheid length with cambial age. Differences between scions and rootstocks were small. From the last relationship it can be extracted that juvenile wood is produced in both scions and rootstocks although the Aleppo pine branches which were used for grafting were genetically matured. Between ring width and dry density and between ring width and tracheid length no statistical correlations were found either in scions or in rootstocks. The tracheid length in mature wood was higher than in juvenile wood. An increase of tracheid length with ring width was observed only in the case of juvenile wood.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 223-234 ◽  
Author(s):  
Shawn D. Mansfield ◽  
Roberta Parish ◽  
Peter K. Ott ◽  
James F. Hart ◽  
James W. Goudie

Abstract A dynamic interrelationship exists among wood density and fiber traits (tracheid length and microfibril angel, MFA) and the ultimate wood strength properties. Moreover, many of the basic fundamental wood attributes are heavily influenced by crown size and architecture. In an attempt to examine this interplay, we thoroughly characterized 60 interior spruce (Picea glauca × P. engelmannii) trees sampled in three age classes from four sites in central British Columbia. Breast height discs were taken, and relative wood density was measured along two radii. Tracheid length was assessed on isolated 5 years increments from pith to bark at breast height for each tree, as was MFA. Segmented regression was used to identify the “juvenile to mature wood” transition point, which revealed transition ages of 9.4 and 15.1 years for wood density and MFA, respectively, while fiber length continued to elongate until near 60 years of age. The flexural properties, modulus of elasticity (MoE) and modulus of rupture (MoR), were also quantified in the 60 individuals and found to be best predicted by VFV, a measure of tree vigor, and not the basic wood attributes. These findings imply that long crowns carrying large amounts of foliage, VFV, negatively impact wood strength in interior spruce.


Sign in / Sign up

Export Citation Format

Share Document