Synthesis and Characterization of ZnO Nanoparticles and Its Application to Dye Sensitized Solar Cell

2018 ◽  
Vol 24 (8) ◽  
pp. 5618-5623
Author(s):  
Lakkanna S Chougala ◽  
Mahantesh S Yatnatti ◽  
Ravi K Linganagoudar ◽  
Jagadish S Kadadevarmath

In this paper, we have reported the synthesis of zinc oxide (ZnO) nanoparticles by aqueous route method and its characterization. By X-ray diffraction pattern (XRD) study it reveals that ZnO has hexagonal wurtzite structure with average particle size of 16.5 nm. From the results of scanning electron microscope (SEM) and Atomic force microscope (AFM) images, particles were spherical in nature with good aggregation. Stoichiometric ratio of Zinc and oxygen were almost close which was revealed from energy dispersive analysis of X-ray (EDAX). From infrared spectroscopy (FTIR), peak of Zn–O bond appears at 433.43 cm−1. Direct band gap of ZnO was found to be 3.36 eV estimated from UV-Vis absorption spectra. The Photovoltaic properties of DSSC sensitized by Di-tetrabutylammonium cis-bis (isothiocyanato) bis (2,2′ -bipyridyl-4,4′-dicarboxylato) ruthenium(II) (N-719 dye) were obtained in which photo anode is prepared by synthesized ZnO. Photocurrent (I) and photovoltage (V) was measured using designed automated load variable solar simulator and optimum solar energy to electricity conversion efficiency (η) of 2.35% under AM 1.5 irradiation (1000 W/m2) was observed.

2018 ◽  
Vol 4 (4) ◽  
pp. 135-141 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
D. Benny Anburaj ◽  
G Nedunchezhian ◽  
S. Joshua Gnanamuthu ◽  
...  

Recently, transition metal (TM) and rare earth ion doped II–VI semiconductor nanoparticles have received much attention because such doping can modify and improve optical properties of II–VI semiconductor nanoparticles by large amount. In this study, undoped, La doped and La+Ag co-doped ZnO nano particles have been successfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcinated at 600 °C for 2 h. The effect of lanthanum and lanthanum-silver incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescences properties were found to be enhanced for the La and La+Ag co-doped ZnO nanoparticles.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 821 ◽  
Author(s):  
H.S. Ali ◽  
Ali Alghamdi ◽  
G. Murtaza ◽  
H.S. Arif ◽  
Wasim Naeem ◽  
...  

In this work, microemulsion method has been followed to synthesize vanadium-doped Zn1−xVxO (with x = 0.0, 0.02, 0.04, 0.06, 0.08, and 0.10) nanoparticles. The prepared samples are characterized by several techniques to investigate the structural, morphology, electronic, functional bonding, and optical properties. X-ray diffractometer (XRD) analysis confirms the wurtzite phase of the undoped and V-doped ZnO nanoparticles. Variation in the lattice parameters ensures the incorporation of vanadium in the lattice of ZnO. Scanning electron microscopy (SEM) shows that by increasing contents of V ions, the average particle size increases gradually. X-ray Absorption Near Edge Spectroscopy (XANES) at the V L3,2 edge, oxygen K-edge, and Zn L3,2 edge reveals the presence and effect of vanadium contents in the Zn host lattice. Furthermore, the existence of chemical bonding and functional groups are also asserted by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). UV–Visible analysis shows that by increasing V+ contents, a reduction up to 2.92 eV in the energy band gap is observed, which is probably due to an increase in the free electron concentration and change in the lattice parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dinesh Patidar ◽  
Anusaiya Kaswan ◽  
N. S. Saxena ◽  
Kananbala Sharma

Monodispersed ZnO nanoparticles have been synthesised in ethylene glycol medium using zinc acetate and sodium hydroxide at room temperature through ultrasonic treatment. The monodispersed ZnO nanoparticles were characterized by XRD, TEM, SEM, and optical spectroscopy. The results indicate that ZnO shows the hexagonal wurtzite structure having 8 nm average particle size with the band gap of 3.93 eV. ZnO nanoparticles blended with P3HT show the improvement in the interchains and intrachains ordering as compared to pure P3HT. The power conversion efficiency of P3HT/ZnO solar cell is found to be 0.88%, which is comparable with the result obtained by other researchers.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
N. B. Rithin Kumar ◽  
Vincent Crasta ◽  
B. M. Praveen

The current paper explores the preparation of PVA nanocomposites by doping with zinc oxide (ZnO) nanoparticles using the method of coagulation and solvent casting technique. The dopant zinc oxide nanoparticle is prepared by simple precipitation method and is confirmed by the X-ray diffraction (XRD) studies. The XRD studies explore that the average particle size of the synthesized nanoparticles is 55 nm and show that the crystallinity factor of PVA nanocomposites is influenced by the interaction occurring between the PVA main chain and the ZnO nanoparticle. The FTIR spectroscopy suggests that the formulation of complexes occurring between the dopants and the PVA main chain is due to inter or intra molecular hydrogen bonding. UV-vis spectra explore the dramatic decrease in the optical energy gap of nanoparticles doped polymer composites and the variations of Urbach energy (Eu) related to crystallinity for various dopant concentrations. The mechanical properties of the PVA nanocomposites were explored using universal testing machine (UTM) that reflects that, for x=15% doping concentration, there is an increase in the tensile strength, stiffness, and Young’s modulus, whereas, for x=7.5% concentration, the percentage total elongation at fracture is found to be the maximum. The morphological behavior and homogenous nanoparticle distribution in the composites were examined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX).


2013 ◽  
Vol 24 ◽  
pp. 123-132 ◽  
Author(s):  
S.M. Giripunje ◽  
Jyoti Ghushe

ZnO nanoparticles were prepared by chemical method using starch as capping agent. Also the polyaniline-zinc oxide (PANI-ZnO) nanocomposites were prepared by in-situ polymerization of aniline monomer with ZnO nanomaterials. The structure and morphology of the ZnO nanoparticles were investigated by X-ray diffraction and scanning electron microscopy. X-ray diffraction revealed the wurtzite structure of ZnO. Average particle size of the ZnO nanoparticles were also calculated from XRD. SEM micrographs showed the spherical shape of ZnO nanoparticles. Band gap energy of ZnO nanoparticles was determined from UV absorbance spectra and confirm quantum confinement. In UV-Vis spectra of PANI salt, two absorption peaks are observed at 320 and 630 nm. These absorption peaks arises due to excitation of the benzene segment including amine structures in polyaniline. A considerable large red shift at 360 nm from 320 nm has been observed for PANI-ZnO nanocomposites. This prominent red shift might occur due to the interaction between the hydroxyl groups of ZnO and the quinoid ring of emeraldine salt. Transport properties of PANI-ZnO nanocomposites were studied in terms of transport parameters such as DC electrical conductivity (σ), charge localization length (α-1), most probable hopping distance ® and hopping energy (w) using variable range hopping model as described by Ziller to conducting polymers.


2021 ◽  
Vol 903 ◽  
pp. 27-32
Author(s):  
Krishna Bharath Vinjamuri ◽  
Sashank Viswanadha ◽  
Hymavathi Basireddy ◽  
Rajesh Kumar Borra

Cadmium sulfide (CdS) doped with different concentrations of Ni (2, 4, 6, 8, and 10 %) nanoparticles have been synthesized by chemical co-precipitation method. X-ray diffraction (XRD) studies confirm the crystalline nature of Ni doped CdS nanoparticles had a hexagonal wurtzite structure. Williamson-Hall (W–H), Size-Strain Plot (SSP), and Halder-Wagner (H–W) methods have been used to investigate the average particle size, lattice strain, stress, and energy density from the XRD peak broadening analysis. In W–H method, the models of uniform deformation, uniform deformation stress, and uniform deformation energy density have been implemented to determine the elastic parameters.


2017 ◽  
Vol 17 ◽  
pp. 101-105 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
Durairaj Benny Anburaj ◽  
G. Nedunchezhian ◽  
R. Meenambika

Zinc oxide has been receiving an enormous attention due to its potential applications in a variety of field such as optoelectronics, spintronics and sensors. Ag and In co-doped ZnO nanoparticles with different doping concentration 0.1M, 0.2M and 0.3M were prepared by sol-gel method via microwave irradiation followed by calcinations at 600°C for 2h. The structure and morphology were examined by X-ray diffraction (XRD), and Scanning Electron Microscope (SEM), respectively. Elemental composition has been estimated by Energy Dispersive X-ray Absorption (EDAX), while chemical properties are studied by Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) . The average particle size of the synthesized ZnO nanoparticles was calculated using the Scherrer formula and is found to be of less than 20 nm. Also the effect on the structure and the morphological properties of ZnO when co-doped with silver and Indium is examined. As the process is simple and low cost, it has the potential to be produced on a large scale.


2019 ◽  
Vol 74 (10) ◽  
pp. 937-944 ◽  
Author(s):  
Babiker Y. Abdulkhair ◽  
Mutaz E. Salih ◽  
Nuha Y. Elamin ◽  
A. MA. Fatima ◽  
A. Modwi

AbstractStrenuous efforts have been employed to prepare zinc oxide (ZnO) with eco-friendly methods; however, few studies have reported the fabrication of ZnO using a sustainable procedure. In this study, spherical ZnO nanoparticles were successfully fabricated for photocatalysis applications using a simple and eco-friendly method using an arabinose sugar solution. The ZnO nanoparticles with a wurtzite structure were obtained by combining zinc nitrate and arabinose in water, followed by heating, evaporation, and calcinations at different annealing temperatures. The annealed ZnO photocatalysts were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The findings revealed a hexagonal wurtzite structure and good crystallinity with crystallite size increasing from 18 to 31 nm by means of an increase in the annealing temperature. The photocatalytic performance was examined to determine the degradation of mix dye waste. The spherical ZnO nanoparticles showed mix pollutant degradation of 84 % in 25 min at 400 °C.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


Author(s):  
Saranyoo Chaiwichian ◽  
Buagun Samran

Abstract Monoclinic BiVO4 photocatalyst films decorated on glass substrates were successfully fabricated via a dip-coating technique with different annealing temperatures of 400 °C, 450 °C, 500°C, and 550 °C. All of the physical and chemical properties of as-prepared BiVO4 photocatalyst film samples were investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra techniques. The results revealed that the as-prepared BiVO4 photocatalyst film samples retained a monoclinic phase with an average particle size of about 50 – 100 nm. Moreover, the BiVO4 photocatalyst film samples showed a strong photoabsorption edge in the range of visible light with the band gap energy of 2.46 eV. The photocatalytic activities of all the film samples were tested by the degradation of model acid orange 7 under visible light irradiation. The BiVO4 photocatalyst film sample annealed at a temperature of 500 °C showed the highest photoactivity efficiency compared with other film samples, reaching up to 51%within 180 min. In addition, the stability and reusability of BiVO4 photocatalyst film sample made with an annealing temperature of 500 °C did not show loss of photodegradation efficiency of acid orange 7 after ten recycles. A likely mechanism of the photocatalytic process was established by trapping experiments, indicating that the hydroxyl radical scavenger species can be considered to play a key role for acid orange 7 degradation under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document