Nanocomposite of Polyaniline and ZnO: Preparation, Characterisation, Optical and Electrical Properties

2013 ◽  
Vol 24 ◽  
pp. 123-132 ◽  
Author(s):  
S.M. Giripunje ◽  
Jyoti Ghushe

ZnO nanoparticles were prepared by chemical method using starch as capping agent. Also the polyaniline-zinc oxide (PANI-ZnO) nanocomposites were prepared by in-situ polymerization of aniline monomer with ZnO nanomaterials. The structure and morphology of the ZnO nanoparticles were investigated by X-ray diffraction and scanning electron microscopy. X-ray diffraction revealed the wurtzite structure of ZnO. Average particle size of the ZnO nanoparticles were also calculated from XRD. SEM micrographs showed the spherical shape of ZnO nanoparticles. Band gap energy of ZnO nanoparticles was determined from UV absorbance spectra and confirm quantum confinement. In UV-Vis spectra of PANI salt, two absorption peaks are observed at 320 and 630 nm. These absorption peaks arises due to excitation of the benzene segment including amine structures in polyaniline. A considerable large red shift at 360 nm from 320 nm has been observed for PANI-ZnO nanocomposites. This prominent red shift might occur due to the interaction between the hydroxyl groups of ZnO and the quinoid ring of emeraldine salt. Transport properties of PANI-ZnO nanocomposites were studied in terms of transport parameters such as DC electrical conductivity (σ), charge localization length (α-1), most probable hopping distance ® and hopping energy (w) using variable range hopping model as described by Ziller to conducting polymers.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2018 ◽  
Vol 4 (4) ◽  
pp. 135-141 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
D. Benny Anburaj ◽  
G Nedunchezhian ◽  
S. Joshua Gnanamuthu ◽  
...  

Recently, transition metal (TM) and rare earth ion doped II–VI semiconductor nanoparticles have received much attention because such doping can modify and improve optical properties of II–VI semiconductor nanoparticles by large amount. In this study, undoped, La doped and La+Ag co-doped ZnO nano particles have been successfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcinated at 600 °C for 2 h. The effect of lanthanum and lanthanum-silver incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescences properties were found to be enhanced for the La and La+Ag co-doped ZnO nanoparticles.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


2013 ◽  
Vol 591 ◽  
pp. 272-276
Author(s):  
Fang Zhang ◽  
Chao Song ◽  
Ling Li Ma ◽  
Xiao Li Xu ◽  
Zi Fei Peng

Sr2CeO4: Ho3+ was prepared by high-temperature solid-state method. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photo luminescent (PL). The Sr2CeO4:Ho3+ phosphors showed a red emission under the near-ultraviolet excitation (280 nm) and the main emission centered at 475 nm. It has been found that A+ (A+ = Li+, Na+ or K+) codoped Sr2CeO4: Ho3+ phosphors could lead to a remarkable increase of photoluminescence. Luminous intensity was the highest when doping Li+ ions. Investigation indicated that Sr2Ce0.989O4: 0.001Ho3+, 0.01Li+ exhibited the strongest emission. The average particle size was about 6 um. The optimum sintering temperature was 1200 °C and the possible mechanism was also discussed.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 821 ◽  
Author(s):  
H.S. Ali ◽  
Ali Alghamdi ◽  
G. Murtaza ◽  
H.S. Arif ◽  
Wasim Naeem ◽  
...  

In this work, microemulsion method has been followed to synthesize vanadium-doped Zn1−xVxO (with x = 0.0, 0.02, 0.04, 0.06, 0.08, and 0.10) nanoparticles. The prepared samples are characterized by several techniques to investigate the structural, morphology, electronic, functional bonding, and optical properties. X-ray diffractometer (XRD) analysis confirms the wurtzite phase of the undoped and V-doped ZnO nanoparticles. Variation in the lattice parameters ensures the incorporation of vanadium in the lattice of ZnO. Scanning electron microscopy (SEM) shows that by increasing contents of V ions, the average particle size increases gradually. X-ray Absorption Near Edge Spectroscopy (XANES) at the V L3,2 edge, oxygen K-edge, and Zn L3,2 edge reveals the presence and effect of vanadium contents in the Zn host lattice. Furthermore, the existence of chemical bonding and functional groups are also asserted by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). UV–Visible analysis shows that by increasing V+ contents, a reduction up to 2.92 eV in the energy band gap is observed, which is probably due to an increase in the free electron concentration and change in the lattice parameters.


2017 ◽  
Vol 9 (2) ◽  
pp. 60 ◽  
Author(s):  
Sudirman Sudirman ◽  
Indriyati Indriyati ◽  
Wisnu Ari Adi ◽  
Rike Yudianti ◽  
Emil Budianto

Synthesis of Pt/CNT composite by using sol gel method has been performed which the composition of CNT on the composite are vary, (x = 20, 40, 60 and 80 wt%). Performance of composite was characterized by Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD), respectively. In the refinement results of X-ray diffraction pattern, the composite consists of two phases, namely, carbon and platinum phases. Carbon phase has a structure hexagonal (P 63 m c) with lattice parameters a = b = 2.451(2) Å and c = 6.89(1) Å, α = β = 90° and γ = 120°, the unit cell volume of V = 35.8(1) A3, and the atomic density of ρ = 2.224 g.cm-3. While platinum phase has the structure of cubic (F m -3 m) with lattice parameters a = b = c = 3.921(2) Å, α = β = γ = 90°, the unit cell volume of V = 60.3(1) A3, and the atomic density of ρ = 21.487 g.cm-3.According to the image of TEM, the average particle size for Pt nano particle is estimated to range from 4.1-4.3 nm. While the cavity diameter average of CNT is estimated to range from 5.9-7.5 nm. Based on the calculation, the crystallite size of the Pt particle was around 4.31 nm. The optimum value of dispersed Pt into CNT occurred at 60 wt% CNT with the best composition of Pt in the unit cell of cystal structure. We concluded that this study successfully dispersed Pt nanoparticles onto CNT formed Pt/CNT composite. This was a great opportunity that the composite can be applied as electrocatalyst system on fuel cell application.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


2012 ◽  
Vol 554-556 ◽  
pp. 18-22
Author(s):  
Supakorn Silakate ◽  
Anucha Wannagon ◽  
Apinon Nuntiya

The objectives of this study were to prepare leadless crystalline glazes from iron oxide by using low temperature firing (1,100°C) and to study the effect of concentration of iron oxide on the phase composition of the glaze raw materials on phase transformation in leadless iron oxide crystalline glaze. The crystalline phases were investigated by using the DTA, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The composition of the glaze raw materials compose of nepheline syenite, colemanite, pottery stone, bentonite, ZnO, Li2CO3, SiOSubscript text2 and 10, 15 and 20%(w/w) iron oxide (Fe2O3). The glaze raw materials were ground for homogeneous mixtures by ball milling for 24h. The average particle size of the mixture was 3.86 µm. The glaze bodies were carried to firing at 1,100°C at the heating rate of 2°C/min and soaking for 0.5h. Then, the glaze bodies were cooled at the cooling rate of 1°C/min and maintained at 1,080°C for 3h and then maintained at 980°C for 1h, respectively. From the experiment results, it was found that the crystallization temperatures (Tc) of franklinite (ZnFe2O4) and anorthite (CaAl2Si2O8) depend on the concentration of iron oxide content.


2017 ◽  
Author(s):  
Yusnita Rifai

AbstrakNanopartikel perak telah disintesis menggunakan metode reduksi. Dalam penelitian ini, ekstrak metanol daun Kemangi (Ocimum citriodorum) digunakan sebagai agen pereduksi untuk prekursor AgNO3. Sintesis nanopartikel perak dilakukan dengan mencampurkan laru- tan AgNO3 1mM dengan filtrat ekstrak daun kemangi. Hasil karakterisasi UV-Vis menun- jukkan bahwa nilai absorbansi meningkat dengan meningkatnya waktu kontak reaksi. Pun- cak absorbansi spektrum UV-Vis dari sampel biosintesis nanopartikel perak berkisar pada 427-439 nm selama 1 hari dengan pengadukan dan penyimpanan. Ukuran nanopartikel perak ditentukan menggunakan Pengukur Ukuran Partikel (PSA) dengan rata-rata distribusi uku- ran partikel sebesar 57,38 nm. Efek mekanik dalam proses biosintesis nanopartikel perak cenderung mempercepat pembentukan nanopartikel perak. Hasil karakterisasi menggunakan Difraksi Sinar-X (XRD) diketahui kristalit yang terbentuk memiliki intensitas terbesar pada sudut 38° dengan nilai FWHM 0,66310 (ukuran 0,3 nm) dalam sistem kristal kubik.Kata kunci: Biosintesis, Nanopartikel Perak, Ocimum citriodorum, Karakterisasi AbstractSynthesis of silver nanoparticles by using the reduction method with methanol extract basil (Ocimum citriodorum) leaves, which acted as a reducing agent for AgNO3 precursor have been conducted. Synthesis nanoparticles was carried out by mixing the solution of AgNO3 1mM with filtrate extract of Ocimum leaves. The results of characterization showed that absorbance values increased with the increase in reaction time. Peak of UV-Vis absorption spectrum of biosynthesis sample of silver nanoparticles with stirring and storage each at a wavelength 427-439 nm for 1 day. Silver nanoparticles size was determined by using PSA (Particles Size Analyzer) with an average particle size distribution of 57,38 nm. Mechanical effect in biosynthesis process of silver nanoparticles tends to speed up the formation of silver nanoparticles. The result of characterization by using X-Ray Diffraction (XRD) described that the formed crystal had the angle of 38° with the value of FWHM 0,66310 (sixe 0.3 nm) in cubic crystal system.Key word: Biosynthesis, Silver Nanoparticles, Ocimum citriodorum, Characterization.


1991 ◽  
Vol 6 (7) ◽  
pp. 1567-1573 ◽  
Author(s):  
Pradeep P. Phulé ◽  
Thomas A. Deis ◽  
David G. Dindiger

Controlled chemical polymerization of tantalum ethoxide in the presence of glacial acetic acid (HOAc/Alk. = 16) and solubilized lithium acetate (Li/Ta = 1.00, H2O/Alk. = 55.55) was used for the preparation of an amorphous gel precursor to LiTaO3. Although additional investigations are required, the results suggest that successful formation of amorphous gel network, as opposed to that of colloidal tantalum (hydrous) oxide, may be due to the generation of a new organotantalum precursor via a structural modification reaction between the tantalum ethoxide and glacial acetic acid. The evolution of LiTaO3 ceramics from pre-ceramic gels was investigated using thermal analysis, electron microscopy, and x-ray diffraction. The results indicate that after the completion of gel pyrolysis (200–400 °C) and crystallization (Tc = 590 °C), ultrafine (average particle size 100–300 nm), single phase, crystalline (a = 5.243, c = 13.812 Å) LiTaO3 powders can be prepared at low processing temperatures.


Sign in / Sign up

Export Citation Format

Share Document