Optimization of Solid State Fermentation of Mixed-Culture of Penicillium Consortium for Cellulase and Lytic Polysaccharide Monooxygenases Production

2021 ◽  
Vol 15 (2) ◽  
pp. 180-187
Author(s):  
Zi-Han Xu ◽  
Cui-Yi Liang ◽  
Wen Wang ◽  
Qiong Wang ◽  
Wei Qi ◽  
...  

In order to produce higher titre of cellulolytic enzyme cocktails, present study deals with four Penicillium consortium mixed-culture and to investigate their feasibility of producing higher cellulase and auxiliary enzymes via solid state fermentation (SSF). Among different lignocellulosic waste, rice straw was found to be the most suitable substrate. In addition, the Penicillium consortium in a mixture ratio of 1:1:1:1 which exhibited higher enzyme activity than the monoculture. Nitrogen sources of tryptone had significant influences on cellulase and lytic polysaccharide monooxygenases (LPMOs) production. The highest cellulase and LPMO activities were 16.65 ± 1.83 U/g and 33.87 ± 0.45 U/g, respectively. The SSF process condition used to obtain these activities were at 30 °C during 5 days. These results show that the optimized studied of mixed-cultivation system with Penicillium consortium have potential to be exploiting a complex consortium for the enrichment of cellulolytic enzyme cocktails for bioethanol processes.

2018 ◽  
Vol 17 (23) ◽  
pp. 716-723 ◽  
Author(s):  
Kounbesioune SOMDA Marius ◽  
NIKIEMA Mahamadi ◽  
KEITA Ibrahim ◽  
MOGMENGA Iliassou ◽  
H. S. KOUHOUNDE Sonagnon ◽  
...  

2020 ◽  
Vol 12 (21) ◽  
pp. 8893
Author(s):  
Huanran Liu ◽  
Dan Zhang ◽  
Xia Zhang ◽  
Chuanzhi Zhou ◽  
Pei Zhou ◽  
...  

The strains capable of degrading cellulose have attracted much interest because of their applications in straw resource utilization in solid-state fermentation (SSF). However, achieving high spore production in SSF is rarely reported. The production of spores from Streptomyces griseorubens JSD-1 was investigated in shaker-flask cultivation in this study. The optimal carbon, organic nitrogen and inorganic nitrogen sources were sucrose, yeast extract and urea, respectively. Plackett–Burman design (PBD) was adopted to determine the key medium components, and the concentration levels of three components (urea, NaCl, MgSO4·7H2O) were optimized with the steepest ascent path and central composite design (CCD), achieving 1.72 × 109 CFU/g of spore production. Under the optimal conditions (urea 2.718% w/v, NaCl 0.0697% w/v, MgSO4·7H2O 0.06956% w/v), the practical value of spore production was 1.69 × 109 CFU/g. The determination coefficient (R2) was 0.9498, which ensures an adequate credibility of the model.


2012 ◽  
Vol 6 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Ursula Fabiola Rodríguez-Zúñiga ◽  
Sonia Couri ◽  
Victor Bertucci Neto ◽  
Silvio Crestana ◽  
Cristiane Sanchez Farinas

2000 ◽  
Vol 6 (3) ◽  
pp. 251-258 ◽  
Author(s):  
C. Reyes-Moreno ◽  
C.A. Romero-Urias ◽  
J. Milan-Carrillo ◽  
R.M. Gomez-Garza

Solid state fermentation (SSF) represents a technological alternative for a great variety of legumes and cereals, or combinations of them, to improve their nutritional quality and to obtain edible products with palatable sensorial characteristics. Chickpeas (Cicer arietinum L.) are prone to develop the hardening phenomenon, also known as hard-to-cook (HTC) defect, when stored under adverse conditions of high temperature (≥ 25 °C) and high relative humidity (≥ 65%). This hard-to-cook phenomenon causes increases in cooking time, decreases in nutritional quality and deterioration of sensorial attributes of chickpea. The objective of this work was to study the effect of SSF on chemical composition and nutritional quality of fresh and hardened chickpeas. The hardening of chickpea ( Cicer arietinum L. Blanco Sinaloa 92 variety) for human consumption, was produced by accelerated storage (33-35 °C, RH = 75%, 180 days). A Rhizopus stolonifer spore suspension (1 x 106 spores/mL) was used as starter for the fermentation. The temperature and time of the SSF process were 35.8 °C and 42.7 h, respectively. The tempeh was obtained from fresh and hardened chickpea. The SSF process caused a significant increase ( p ≤ 0.05) in crude protein, true protein (19.6-19.9 to 23.2-23.4%), protein solubility, in vitro digestibility (68.6-73.1% to 79.9-80.5%), available lysine (2.19-3.04 to 3.19-4.07 g lysine/ 16 N), palmitic acid, and stearic acid, and a significant decrease ( p ≤ 0.05) in lipids, minerals, linoleic acid, phytic acid (8.82-10.73 to 2.11 g phytic acid/g dry matter), and tannins (16.1-22.4 to 3 mg catechin/g dry matter). The SSF process improved significantly the quality of fresh and hardened chickpea.


2016 ◽  
Vol 4 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Rakeshkumar Ramanlal Panchal ◽  
Piyushbhai Vishnubhai Desai

Gibberellic acid production using Fusarium moniliforme, isolated from wilted sugarcane plant has been investigated by solid state fermentation (SSF). The gibberellic acid production of 154mgm/gm was obtained on commercial wheat bran (CWB) mineral salt acid bed in 500 ml flasks after 168 h incubation. The gibberellic acid production rate was about 0.6 to 0.9 mgm/gm/hr during 96 to 168 h. Different carbon sources namely sucrose, lactose, maltose, soluble starch, glycerol, wheat flour and maize flour were tested as an additional substrate along with CWB at the concentration of 25% w/w or v/w base to observe its effects on gibberellic acid production. Soluble starch has been proved the best additional carbon source for gibberellic acid production, which yielded 1160mgm/gm of gibberellic acid after 168 h. Similarly, various nitrogen sources namely NH4Cl, NH4NO3, (NH4)2SO4, (NH4)MoO4 and urea were tested as an additional substrate at the concentration of 0.07% w/w of CWB. Urea was proved as the best nitrogen source which yielded 532 mgm/gm of gibberellic acid after 168 h incubation. We have observed about 7.5-fold and 3.5-fold increase in gibberellic acid production upon addition of soluble starch and urea respectively, in CWB using Fusarium moniliforme.Int J Appl Sci Biotechnol, Vol 4(3): 402-407


2014 ◽  
Vol 1010-1012 ◽  
pp. 42-47
Author(s):  
Jun Yao He ◽  
Xuan Yi Ye ◽  
Qing Zhi Ling ◽  
Li Hui Dong

The production of laccase by solid-state fermentation (SSF) usingArmillariella tabescenswas studied. Wheat bran was selected to be the most suitable solid substrate. Several operational variables including nitrogen source, moisture content, copper and aromatic inducers were investigated. The results showed that the complex nitrogen sources, NH4NO3coupled with peptone was shown to be the best nitrogen source. 75% of initial moisture content was proved to be appropriate. Copper significantly influenced the laccase production and the yield of laccase was improved by addition of 1.5 mM copper sulphate in the medium. Guaiacol efficiently induced the laccase production and the enzyme yield (24500U/g) was enhanced by 32% compared with he control without any aromatic inducers. Efficient production of laccase fromA. tabescenscan be achieved by solid-state fermentation.


2017 ◽  
Vol 1 (1) ◽  
pp. 64-71
Author(s):  
Zuriana Sidi Ahmad ◽  
Mimi Sakinah Abdul Munaim

Malaysia is the largest country that has produced many types of waste. One of it is Meranti wood sawdust. These wastes result in a significant environmental problem if not dispose it in the proper manner. The main objective of this article is to produce the high yield of sorbitol by solid state fermentation (SSF) process from pretreated Meranti wood sawdust using bacterium Lactobacillus plantarum (BAA 793; NCIMB 8826). One factorat a time (OFAT) was studied for further process using solid state fermentation (SSF) process and investigated the effect of relevant parameters (fermentation time, range: 2 hours to 14 hours, moisture content, range: 40% to 90%, temperature, range: 25 oC to 45 oC) to the solid-state fermentation (SSF) process in producing high yield of sorbitol. The highest product yield was obtained at 50% moisture content, at 10 hours of fermentation time and 35 oC of incubation temperature where the concentration of sorbitol was 25.68 g/L respectively. This study also showed that the solid state fermentation (SSF) process will produce the high yield of sorbitol production compared to the submerged fermentation and could serve as a-low cost substrate for bioproducts production especially sorbitol


Sign in / Sign up

Export Citation Format

Share Document