Role of Osteogenesis of MC3T3-E1 Induced by Demineralized Tooth Block with Composite Acids: An In Vitro Study

2020 ◽  
Vol 10 (8) ◽  
pp. 1085-1093
Author(s):  
Liu-Zhu Jin ◽  
Xiao-Qian Gu ◽  
Jing-Jing Li ◽  
Yuan Ma ◽  
Lu Cai ◽  
...  

More and more research had focused on the osteogenesis of demineralized dentin in clinic, especially when the first application of deminerized dentin in 2008. The study tried to compare the osteogenetic ability of the demineralized dentin block, which were processed two different regents by VacuaSonic system. The extracted human permanent teeth were demineralized by two different methods. Then the MC3T3-E1 cells were invited to culture on the surface of these demineralized dentin blocks (DDB). The cell attachment, proliferation and differentiation were tested. Adhesion of MC3T3-E1 on DDM was observed using scanning electron microscopy and confocal test, the Alizarin Red S, ALP activity, and the protein of BMP-2/-7 and OCN were employed to confirm the level of cell differentiation. The P value was set at 0.05. The microfilaments established a good contact and formed a network in Group A. The Group A had more full cytoskeleton and actin stretched more obviously than Group C, the number of cells on three scaffolds were difference (p < 0 05). The MTT results showed no cytotoxicity in all experiment groups, and Group C had a significant difference in cell proliferation than other groups (p < 0 05) except for day 1. While when related to the cell differentiation, Group A showed a similar result with Group C, but in Alizarin Red S, Group A had a superior result (p < 0 05). The tooth dentin scaffold processed with composite acids in Group A presents the superiority in osteoconduction and preferable osteogenesis ability, which could be an alternative method to process the tooth scaffold.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Tianlei Chen ◽  
Huijuan Mao ◽  
Cheng Chen ◽  
Lin Wu ◽  
Ningning Wang ◽  
...  

Objective. To investigate the role and possible mechanism ofα-Klotho in the calcification and the osteogenic transition of cultured VSMCs.Methods. VSMCs were culturedin vitroand divided into 5 groups, each using a different medium: (1) control; (2)β-GP; (3)β-GP + Klotho; (4)β-GP + LiCl; (5)β-GP + Klotho + LiCl. Calcium deposits were visualized using Alizarin Red S staining. The calcium concentrations were determined by the o-cresolphthalein complexone method. BMP2, Runx2 andβ-catenin levels were estimated by western blotting, and the level ofα-SMA was determined by using immunofluorescence at day 12.Results.β-GP induced an increase in the expression of BMP2, Runx2, andβ-catenin. The calcium content increased, and the expression ofα-SMA decreased. Alizarin Red S staining was positive under the high phosphorus conditions. BMP2, Runx2, andβ-catenin levels and the calcium content decreased when the cells were cultured with rmKlotho; however, the levels of each were upregulated after treatment with the LiCl.Conclusions. Klotho can ameliorate the calcification and osteogenic transition of VSMCs induced byβ-GP. The mechanism of Klotho in preventing calcification in VSMCs may be partially mediated by the inhibition of the Wnt/β-catenin signaling pathway.


2011 ◽  
Vol 90 (12) ◽  
pp. 1428-1433 ◽  
Author(s):  
R.J. Miron ◽  
E. Hedbom ◽  
N. Saulacic ◽  
Y. Zhang ◽  
A. Sculean ◽  
...  

The osteogenic potential of autogenous bone grafts is superior to that of allografts and xenografts because of their ability to release osteoinductive growth factors and provide a natural osteoconductive surface for cell attachment and growth. In this in vitro study, autogenous bone particles were harvested by four commonly used techniques and compared for their ability to promote an osteogenic response. Primary osteoblasts were isolated and seeded on autogenous bone grafts prepared from the mandibles of miniature pigs with a bone mill, piezo-surgery, bone scraper, and bone drill (bone slurry). The osteoblast cultures were compared for their ability to promote cell attachment, proliferation, and differentiation. After 4 and 8 hrs, significantly higher cell numbers were associated with bone mill and bone scraper samples compared with those acquired by bone slurry and piezo-surgery. Similar patterns were consistently observed up to 5 days. Furthermore, osteoblasts seeded on bone mill and scraper samples expressed significantly elevated mRNA levels of collagen, osteocalcin, and osterix at 3 and 14 days and produced more mineralized tissue as assessed by alizarin red staining. These results suggest that the larger bone graft particles produced by bone mill and bone scraper techniques have a higher osteogenic potential than bone slurry and piezo-surgery.


2016 ◽  
Vol 6 (1) ◽  
pp. 19-23
Author(s):  
Amol Mhatre ◽  
VK Ravindranath ◽  
Sachin Doshi ◽  
Girish Karandikar ◽  
PS Vivek

ABSTRACT Aim The aim of this in vitro study was to investigate the efficiency of the new generation of elastomeric ligatures with innovative designs (SlideTM and AlastiKTM Easy-to-Tie) in reducing frictional resistance (FR) during sliding mechanics as compared with conventional ligatures. Materials and Methods Sixty ligature samples divided into four groups were used for the study. Group A: QuiK-StiK™ (3M Unitek, Monrovia, CA, USA), Group B: AlastiK™ Easy-to-Tie (3M Unitek, Monrovia, CA, USA), Group C: Slide™ (Leone, Firenze, Italy), and Group D: SS ligatures 0.010” (Libral Traders, New Delhi, India). Universal Testing Machine, Instron was used for measuring FR at the bracket-wire interface. Results There was statistically significant difference in FR among all the four groups of ligatures tested (p < 0.001). Slide ligatures produced the least amount of FR followed by SS ligatures, Easy-to-Tie, and QuiK-StiK in the increasing order of the FR values registered. Conclusion SlideTM ligatures may represent a valid alternative to passive self-ligating brackets when minimal amount of friction is desired. Angulation introduced into the elastomeric ligatures reduces the friction in comparison to conventional elastomeric ligatures. How to cite this article Vivek PS, Ravindranath VK, Karandikar G, Doshi S, Mhatre A, Sonawane M. Frictional Characteristics of the Newer Low-friction Elastomeric Ligatures. J Contemp Dent 2016;6(1):19-23.


2021 ◽  
pp. 3476-3486
Author(s):  
Alaa. M. Hasan ◽  
Ekhlas. A.J. ElKaaby ◽  
Rakad. M.Kh. AL-Jumaily

    The leading purpose of this work is the development of efficient culture conditions to induce calli from cabbage (Brassica oleracea var. capitata L.) under in vitro conditions. The mature seeds were surface sterilized with combinations of different concentrations of ethanol and NaOCl in different time durations and  were germinated on MS basal medium. The results revealed that the best sterilization method of cabbage seeds was by using 70% ethanol for one minute, followed by 15 min in 2% (NaOCl). Seedlings were used as donor sources for hypocotyls, cotyledon leaves, true leaves, and shoot tip explants. These explants were cultured on different combinations of cytokinins (TDZ, BAP, Ad) and auxins (IAA, NAA, 2, 4-D) then implanted in Murashige and Skoog (MS) media. 4 weeks after culturing, a significant difference was found among the explants in response to plant hormones. The maximum percentage of callus induction (100%) was using the combinations of 1 BAP + 1 2, 4-D, 1 BAP + 1 NAA, and 1 BAP + 2 2,4-D mg. l-1. In addition, explants responses varied and the hypocotyls showed a superior result (85.71 %) as compared to other explants. For callus fresh weight, the combination of 0.22 TDZ + 79.9 Ad mg. l-1    had a significant effect, causing the highest fresh weight (0.2745g), while control treatment gave the lowest mean of 0.0066 g. Data showed that cotyledon explants were significantly superior in giving highest callus fresh weight with the mean of 0.1723 g. On the other hand, hypocotyl explants gave the lowest mean, reaching 0.1542 g.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 974 ◽  
Author(s):  
José Luis Sanz ◽  
Leopoldo Forner ◽  
Alicia Almudéver ◽  
Julia Guerrero-Gironés ◽  
Carmen Llena

Blood clot formation in the apical third of the root canal system has been shown to promote further root development and reinforcement of dentinal walls by the deposition of mineralized tissue, resulting in an advancement from traditional apexification procedures to a regenerative endodontic treatment (RET) for non-vital immature permanent teeth. Silicate-based hydraulic biomaterials, categorized as bioactive endodontic cements, emerged as bright candidates for their use in RET as coronal barriers, sealing the previously induced blood clot scaffold. Human stem cells from the apical papilla (hSCAPs) surviving the infection may induce or at least be partially responsible for the regeneration or repair shown in RET. The aim of this study is to present a qualitative synthesis of available literature consisting of in vitro assays which analyzed the viability and stimulation of hSCAPs induced by silicate-based hydraulic biomaterials. A systematic electronic search was carried out in Medline, Scopus, Embase, Web of Science, Cochrane and SciELO databases, followed by a study selection, data extraction, and quality assessment following the PRISMA protocol. In vitro studies assessing the viability, proliferation, and/or differentiation of hSCAPs as well as their mineralization potential and/or osteogenic, odontogenic, cementogenic and/or angiogenic marker expression in contact with commercially available silicate-based materials were included in the present review. The search identified 73 preliminary references, of which 10 resulted to be eligible for qualitative synthesis. The modal materials studied were ProRoot MTA and Biodentine. Both bioceramic materials showed significant positive results when compared to a control for hSCAP cell viability, migration, and proliferation assays; a significant up-regulation of hSCAP odontogenic/osteogenic marker (ALP, DSPP, BSP, Runx2, OCN, OSX), angiogenic growth factor (VEGFA, FIGF) and pro-inflammatory cytokine (IL-1α, IL-1β, IL-6, TNF-α) expression; and a significant increase in hSCAP mineralized nodule formation assessed by Alizarin Red staining. Commercially available silicate-based materials considered in the present review can potentially induce mineralization and odontogenic/osteogenic differentiation of hSCAPs, thus prompting their use in regenerative endodontic procedures.


2012 ◽  
Vol 9 (77) ◽  
pp. 3528-3538 ◽  
Author(s):  
Wen L. Chai ◽  
Ian M. Brook ◽  
Anders Palmquist ◽  
Richard van Noort ◽  
Keyvan Moharamzadeh

For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant–soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant–soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different.


2017 ◽  
Vol 05 (01) ◽  
pp. 039-046 ◽  
Author(s):  
Monica Sharma ◽  
Ajay Bansal ◽  
Sunny Panthi ◽  
Shefali Malik ◽  
Atulya Sharma

Abstract Purpose: The purpose of this in vitro study was to evaluate marginal fit of cobalt- chromium (Co-Cr) copings fabricated by direct metal laser sintering system (DMLS) and conventional lost-wax technique (LW). Materials and method: Forty tooth preparations were carried out over extracted mandibular molars. They were divided into two groups A and B of 20 each. For group A Co-Cr copings were fabricated by direct metal laser sintering (DMLS) and for group B by lost wax technique (LW). Glass –ionomer cement (GIC) was used to tack the copings over their preparations. Marginal fit was then evaluated directly under the stereomicroscope. Results: The mean marginal gap of group A was 27.9 ± 2.4 μm and group B was 40.4 ±6 μm. Statistical analysis using t - test showed highly significant difference (P>.05) between the marginal mean of the DMLS (group A) compared to LW (group B). Conclusion: The DMLS copings demonstrated superior marginal fit compared to that of conventional Co-Cr casted copings.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Basawaraj Biradar ◽  
Sudharani Biradar ◽  
Arvind MS

Objectives. The objective of this in vitro study was to investigate whether weight gain or loss in the three different composites occurs due to water absorption when they are stored in water.Methods. The composite restorative materials selected for this study included a microfine hybrid (Synergy) and two nanofilled composite restorative materials (Ceram X and Filtek Supreme Ultra). Twenty specimens of each material were fabricated of each composite material. Group A: Filtek Supreme Ultra, Group B: Synergy, Group C: Ceram X. Then all the specimens were stored in 10 ml Distilled water containing test tubes and placed in incubator at 37°C for six weeks. The weight changes of these specimens were measured daily for the first week and later once a week for next five weeks by using an electrical analytical balance.Results.The data was analyzed by one-way analysis of variance and Student'sttest. All groups showed maximum amount of water absorption in the first week than gradual decrease in the water absorption from the second to the sixth week, as compared to the first week and there is no statistically significant difference between the groups tested.Conclusion. All the composite restorative material absorbs some amount of water. The water absorption of the composite may decrease the physical and mechanical properties of the composites; hence it is necessary to consider the type of the material before starting the treatment.


2018 ◽  
Vol 5 (8) ◽  
pp. 172033 ◽  
Author(s):  
Zhenfei Huang ◽  
Zhihong Wu ◽  
Bupeng Ma ◽  
Lingjia Yu ◽  
Yu He ◽  
...  

Titanium (Ti) is an ideal bone substitute due to its superior bio-compatibility and remarkable corrosion resistance. However, in order to improve the osteoconduction and osteoinduction capacities in clinical applications, different kinds of surface modifications are typically applied to Ti alloys. In this study, we fabricated a tightly attached polydopamine-assisted Fe 3 O 4 nanoparticle coating on Ti with magnetic properties, aiming to improve the osteogenesis of the Ti substrates. The PDA-assisted Fe 3 O 4 nanoparticle coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and water contact angle measurements. The cell attachment and proliferation rate of the human bone mesenchymal stem cells (hBMSCs) on the Ti surface significantly improved with the Fe 3 O 4 /PDA coating when compared with the pure Ti without a coating. Furthermore, the results of in vitro alkaline phosphatase (ALP) activity at 7 and 14 days and alizarin red S staining at 14 days showed that the Fe 3 O 4 /PDA coating on Ti promoted the osteogenic differentiation of hBMSCs. Moreover, hBMSCs co-cultured with the Fe 3 O 4 /PDA-coated Ti for approximately 14 days also exhibited a significantly higher mRNA expression level of ALP, osteocalcin and runt-related transcription factor-2 (RUNX2). Our in vitro results revealed that the present PDA-assisted Fe 3 O 4 nanoparticle surface coating is an innovative method for Ti surface modification and shows great potential for clinical applications.


2013 ◽  
Vol 70 (3) ◽  
pp. 279-283
Author(s):  
Mirjana Apostolovic ◽  
Biljana Kalicanin ◽  
Marija Igic ◽  
Olivera Trickovic-Janjic ◽  
Dusan Surdilovic ◽  
...  

Bacground/Aim. Glass ionomer cements (GIC) belong to the group of polycarboxyl cements, and one of the principal characteristics of these materials is their anticariogenic potential of fluorine release into saliva and enamel-dentin substance. The aim of this study was to examine the content of released fluorine from GIC restorations (Fuji IX, GC, Japan) of young permanent teeth in the medium of artificial saliva and similar releases in the same medium by the restorations of these teeth treated with a low concentration fluoride solution. Methods. We examined 12 premolars exctracted from orthodontic reasons. The GIC restored teeth were divided into the group treated daily with low concentration fluoride solution (334 ppm) and the control, not treated group. The samples of artificial saliva were analyzed for fluorine ion content using an ion selective electrode. Results. Our comparative analysis of the mean values using the Student?s t-test demonstrated a statistically significant difference in fluorine ion concentration in artificial saliva of fluoridated and non-fluoridated teeth with GIC fillings after 14 and 21 days (p < 0.05), while the difference detected after 7 days was with no statistical significance. Conclusion. The results of this in vitro study indicated that low-concentration fluoride solutions could serve to refluoridate GIC fillings and contribute to an increased fluorine content in saliva. The process of refluoridation of GIC fillings should be advised 2-3 weeks after the restoration, since the release of fluorine from GIC fillings diminishes in time.


Sign in / Sign up

Export Citation Format

Share Document