Effect of Insulin-Like Growth Factor-1 on Bone Formation of Bone Marrow Mesenchymal Stem Cells Under High Glucose Environment by Regulating Insulin Like Growth Factor Binding Protein 2(IGFBP-2)/p38 Pathway

2020 ◽  
Vol 10 (8) ◽  
pp. 1242-1247
Author(s):  
Guoliang Wang ◽  
Yujuan Dong ◽  
Hua Yan

Diabetes easily affects the biological properties of bone marrow mesenchymal stem cells (BMSCs). Insulin-like growth factor-1 (IGF-1) promotes bone healing during osteoporotic fractures. However, IGF-1's effect on BMSCs high glucose is unclear. Rat BMSCs were assigned into control group, high glucose group, and IGF-1 group in which BMSCs were transfected with pc-DNA 3.1-IGF-1 plasmid on the basis of high glucose followed by analysis of IGF-1, RUNX2 and OPN mRNA level by real time PCR, cell proliferation by MTT assay, alkaline phosphatase (ALP) activity, IGFBP-2 level by ELISA, and p38 phosphorylation by Western blot. High glucose group showed significantly decreased IGF-1, RUNX2 and OPN mRNA level, reduced ALP activity, IGFBP-2 expression and p38 phosphorylation compared to control group (P < 0 05). Transfection of IGF-1 plasmid under high-glucose environment significantly upregulated IGF-1, RUNX2 and OPN mRNA, increased ALP activity, IGFBP-2 expression and p38 phosphorylation compared to high-glucose group (P < 0 05). IGF-1 expression is reduced in high glucose environment. Up-regulation of IGF-1 can promote BMSCs osteogenic differentiation through the IGFBP-2/p38 pathway.

2021 ◽  
Vol 11 (4) ◽  
pp. 761-766
Author(s):  
Hao Zhang ◽  
Yuan Tian ◽  
Xiaolin Shi ◽  
Weidong Yuan ◽  
Lei Liu ◽  
...  

Bone marrow mesenchymal stem cells (BMSCs) present reduced proliferation under high glucose condition. Liver kinase B1 (LKB1) can maintain the homeostasis of hematopoietic stem cells. However, whether LKB1 regulates BMSCs osteogenic/adipogenic differentiation under high glucose is unclear. Rat BMSCs were isolated and separated into control group, high glucose group, and LKB1 group (BMSCs were transfected with pc-DNA 3.1-LKB1 plasmid under high glucose condition) followed by analysis of LKB1 expression by Real time PCR and Western blot, osteocalcin, type I collagen, RUNX2 and OPN mRNA level by real-time PCR, FABP4 and PPARγ2 level by western blot. In high glucose group, LKB1 expression was significantly decreased, with reduced expression of osteocalcin, type I collagen, RUNX2 and OPN mRNA and elevated FABP4 and PPARγ2 level compared to control group (P < 0.05). Transfection of LKB1 plasmid reduced LKB1 expression, upregulated osteocalcin, type I collagen, RUNX2 and OPN mRNA and downregulated FABP4 and PPARγ2. Compared with the high glucose group, there was a statistical difference (P <0.05). High glucose can inhibit LKB1 expression and BMSCs osteogenic differentiation, and promote adipogenic differentiation. Upregulating LKB1 expression can promote BMSCs osteogenic differentiation.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2018 ◽  
Vol 45 (2) ◽  
pp. 558-571 ◽  
Author(s):  
Yun Yi ◽  
Yulin Shen ◽  
Qin Wu ◽  
Jingan Rao ◽  
Shu Guan ◽  
...  

Background/Aims: Diabetes mellitus (DM) has become an increasingly epidemic metabolic disease. Vascular endothelial cells play a key role in developing the cardiovascular complications of DM. The A2B receptor is expressed in vascular endothelial cells, and may help regulate the function of endothelial cells. The aim of this study was to investigate the protective effects of oxymatrine (OMT) on human umbilical vein endothelial cells (HUVECs) from high glucose-induced cytotoxicity. Methods: Homology modeling and molecular docking analysis were used to detect the binding sites between the adenosine A2B receptor and OMT. HUVECs were cultured with control (5.5 mM) or elevated glucose (22.2 mM) in the presence or absence of 3 µM OMT or A2B siRNA for 3 days. The MTS cell viability assay was used to measure the toxicity of high glucose on HUVECs and the protective effect of OMT or A2B siRNA. The expression of the adenosine A2B receptor and CCL5 in HUVECs was detected with real-time quantitative PCR (qPCR) and Western blotting methods in each group. Levels of IL-1β and TNF-α were measured using an enzyme-linked immunosorbent assay (ELISA) kit, and the concentration of NO was detected with the nitrate reductase method. Monocyte chemotactic activity in each group was detected using Transwell chambers. Furthermore, the phosphorylation of p38 and ERK1/2 in each group was observed through the Western blotting method. Results: Homology modeling and molecular docking analysis showed that OMT contains well-fitted binding sites to the A2B receptor. After chronic culture at high glucose, the rate of cell viability was significantly lower than that of the control group. After co-treatment with OMT or A2B siRNA, cell viability was significantly increased compared with the high-glucose group. The results from real-time quantitative RT-PCR (qRT-PCR) and Western blotting indicated that high glucose could increase the expression of A2B receptors in HUVECs, an effect that was inhibited by OMT. In addition, the results revealed that the expression of CCL5, IL-1β and TNF-α was increased in the high-glucose group, and that the NO produced by HUVECs decreased due to hyperglycemia; however, co-culture with OMT or A2B siRNA abolished these effects. Meanwhile, the chemotaxis activity of monocytes to HUVECs cultured in high-glucose medium was enhanced 2.59-fold compared to the control cells. However, the inflammatory reactions in HUVECs were completely relieved by co-treatment with OMT or A2B siRNA. Moreover, the phosphorylation of p38 and ERK1/2 in HUVECs in the high-glucose group was significantly higher than that of the control group; these effects were reversed after co-treatment with OMT or A2B siRNA. Conclusion: OMT may protect the HUVECs from high glucose-induced cytotoxicity through inhibitting the expression of A2B receptor and inflammatory factors as well as decreasing the phosphorylation of p38 and ERK1/2.


2019 ◽  
Vol 9 (9) ◽  
pp. 1261-1265
Author(s):  
Hai Nan ◽  
Yun Zhang

Bone marrow mesenchymal stem cells (BMSCs) can differentiate into adipocytes, osteoblasts. Osteoporosis is closely related to BMSCs osteogenic differentiation, and IL-6 is closely related to osteoporosis. This study assessed the effect of IL-6 on BMSCs osteogenic differentiation. Rat BMSCs were cultured and osteogenic induction of BMSCs was performed in the presence of different concentrations (0, 10, 100 ng/ml) of IL-6 followed by analysis of IL-6 level by ELISA, ALP activity by the instructions of the alkaline phosphatase (ALP) detection kit, IL-6, Runx2 and OCN mRNA level, and level of β-catenin by Western blot. Compared with 0 d, IL-6 protein content and IL-6 mRNA expression in cell culture medium was increased significantly on day 7 d, 14 d and 21 d. Compared with 0 ng/ml group, 10, 100 ng/ml IL-6 group showed significantly increased ALP activity and Runx2 and OCN mRNA level in a dose-response relationship. β-catenin was increased significantly in 100 ng/ml IL-6 group. No difference of ALP activity and the expression of osteogenic differentiationmarkers was found between blocking group and control group, which was significantly lower than those in experimental group. IL-6 can promote BMSCs osteogenic differentiation through Wnt signaling.


2020 ◽  
Vol 10 (1) ◽  
pp. 112-119
Author(s):  
Xingxing Fang ◽  
Zi Ye ◽  
Lianglan Shen ◽  
Shuo Tao ◽  
Dongmei Chen ◽  
...  

To investigate the effect of adiponectin (APN) on the oxidative stress-apoptotic pathway of podocytes under high glucose conditions, podocytes were categorized into a control group (5.5 mmol/L, normal glucose, NG), high glucose group (30 mmol/L, high glucose, HG), and an APN intervention group (HG+APN). The expression of podocyte cytoskeleton proteins (nephrin/podocin/synaptopodin), p-AMPK activity, and the NADPH oxidase family (NOX1/NOX4) and apoptosis-related proteins p53 and PUMA (p53 up-regulated apoptotic regulator) were detected by RT-PCR and Western blotting. The total RNA extracted by nano-magnetic beads was retrieved into DNA by the MagBeads Total RNA Extraction Kit, and cDNA was synthesized through reverse transcription. Podocyte apoptosis was detected by flow cytometry. In comparison with the control group, the high glucose group exhibited the reduced expression of podocyte cytoskeleton proteins, decreased p-AMPK activity, increased expression of NOX1, NOX4, P53, and PUMA, and increased podocyte apoptosis (28.15%±1.38%). APN intervention could significantly restore the expression of cytoskeleton proteins, increase the activity of p-AMPK, reduce the expression of NOX1, NOX4, P53, and PUMA, and reduce the apoptosis of podocytes (9.15%±1.98%). The protective effect of APN disappeared when AMPK was inhibited. APN may inhibit oxidative stress-apoptosis of podocytes under high glucose conditions through the activation of AMPK.


2018 ◽  
Vol 49 (5) ◽  
pp. 1747-1754 ◽  
Author(s):  
Deng Yunlei ◽  
Fan  Qiuling ◽  
Wang Xu ◽  
Zhao Qianwen ◽  
Cao Xu ◽  
...  

Background/Aims: Diabetic nephropathy is the one of the most serious microvascular complications of diabetes mellitus, and “metabolic memory” plays a vital role in the development of diabetic complications. To investigate the effect of epigenetics on metabolic memory, we analyzed the impact of transient high-glucose stimulation on the secretion of inflammatory factors from rat glomerular mesangial cells. Methods: Rat glomerular mesangial cells (HBZY-1) were divided into three groups: high-glucose group (25 mM glucose), hypertonic group (5.5 mM glucose+19.5 mM mannitol), and normal-glucose control group (5.5 mM glucose). Mesangial cells were cultured in high-glucose, hypertonic, and normal-glucose media for 24 h and transitioned to normal-glucose culture for 24, 48, and 72 h. Then, protein, mRNA, and supernatants were harvested. The expression of monomethylated H3K4 was determined by western blot analysis, and the expression of the NF-κB subunit p65 and histone methyltransferase set7/9 was determined by quantitative real-time PCR. The expression of monocyte chemoattractant protein 1 (MCP-1) and vascular cell adhesion molecule 1 (VCAM-1) was detected by an enzyme-linked immunosorbent assay. Results: Compared with the control group, H3K4me1 expression was upregulated after transient high-glucose stimulation, gradually downregulated in the following 48 h (P < 0.05), and reached the level of the control group at 72 h (P > 0.05). The expression of set7/9 was increased after 24 h of high-glucose stimulation and the following 24 h and 48 h (P < 0.05); it then returned to the level of the control group at 72 h. Compared with the control group, the increased expression of p65, VCAM-1, and MCP-1 was sustained for at least 72 h in the high-glucose group. Conclusion: Transient high-glucose stimulation can induce the persistent secretion of inflammatory factors from rat glomerular mesangial cells via histone modification.


2021 ◽  
Vol 11 (8) ◽  
pp. 1636-1642
Author(s):  
Yonghuan Zhou ◽  
Guotang Lan ◽  
Yan Zhou ◽  
Tianhao Qu ◽  
Qing Xiong

Oxidative stress affects bone marrow mesenchymal stem cells (BMSCs). YAP is an effector in Hippo signaling, but its’ role in BMSCs osteogenesis/adipogenesis under oxidative stress has not been reported. Mice BMSCs were isolated and assigned into 3 groups, normal control group; oxidative stress group; and YAP group (transfected with YAP plasmid) followed by analysis of YAP expression by Real time PCR. After 14 days of osteogenesis or adipogenic induction, RUNX2, OPN, FABP4 and PPARγ2 mRNA level was measured along with ROS and SOD activities, ALP activity and Wnt5 expression by western blot. Under oxidative stress, YAP expression significantly decreased, RUNX2 and OPN mRNA expression decreased, ROS expression increased, SOD activity decreased, FABP4 and PPARγ2 protein expression increased, ALP activity and Wnt5 expression decreased (P <0.05). YAP plasmid transfection could significantly up-regulate YAP, RUNX2 and OPN mRNA level, decrease ROS, increase SOD and ALP activity, reduce FABP4 and PPARγ2 mRNA expression and increase Wnt5 expression (P <0.05). YAP level in BMSCs is decreased under oxidative stress. Up-regulating YAP can improve the redox balance, promote BMSCs osteogenic differentiation under oxidative stress and inhibit their differentiation to adipocytes.


2019 ◽  
Vol 9 (9) ◽  
pp. 1238-1244
Author(s):  
Yajun Wang ◽  
Zongjiang Wang ◽  
Honggang Sun ◽  
Jianrong Song ◽  
Chao Xu

Silencing information regulator (SIRT1) involves in endocrine diseases. However, whether SIRT1 participates in BMSCs under high glucose environment remains unclear. Rat BMSCs were isolated and divided into control group; high glucose group; and SIRT1 group, in which SIRT1 agonist (Resveratrol) was added to high glucose BMSCs followed by analysis of SIRT1, Bax and Bcl-2 expression by real time PCR and ELISA, cell proliferation by MTT assay, Caspase3 activity, ALP activity, calcification nodule formation by alizarin red staining, changes of ROS and SOD activities, PI3K signaling pathway by Western blot. SIRT1 expression was significantly decreased in BMSCs in high glucose group, with inhibited cell proliferation, increased Caspase 3 activity, Bax expression, and ROS content, decreased Bcl-2 expression, ALP activity, SOD activity, as well as reduced formation of calcified nodules and phosphorylation of PI3K compared to control (P < 0.05). Addition of Resveratrol significantly promoted SIRT1 expression and cell proliferation of BMSCs in high glucose group, decreased Caspase 3 activity, Bax expression, and ROS content, increased Bcl-2 expression, ALP activity, SOD activity, as well as increased formation of calcified nodules and phosphorylation of PI3K (P < 0.05). SIRT1 expression is decreased in BMSCs in high glucose group. Increasing SIRT1 expression in BMSCs under high glucose environment promoted proliferation of BMSCs and the formation of calcified nodules by regulating oxidative stress and activating PI3K signaling pathway.


2015 ◽  
Vol 119 (6) ◽  
pp. 663-669 ◽  
Author(s):  
Yi-Yuan Lin ◽  
Shin-Da Lee ◽  
Chia-Ting Su ◽  
Tsung-Lin Cheng ◽  
Ai-Lun Yang

Dysfunction of insulin and insulin-like growth factor-1 (IGF-1) is associated with the pathophysiology of hypertension. The influence of long-term exercise on vascular dysfunction caused by hypertension remains unclear. We investigated whether long-term treadmill training improved insulin- and IGF-1-mediated vasorelaxation in hypertensive rats. Eight-week-old male spontaneously hypertensive rats (SHR) were randomly divided into sedentary and exercise (SHR-EX) groups. The SHR-EX group was trained on a treadmill for 60 min/day, 5 days/wk, for 8 wk. Wistar-Kyoto rats (WKY) were used as the normal control group. After training, aortic insulin- and IGF-1-mediated vasorelaxation was evaluated in organ baths. Additionally, the roles of phosphatidylinositol 3-kinase (PI3K), nitric oxide synthase (NOS), and aortic protein expression were examined in the three groups. Compared with sedentary SHR and WKY groups, insulin- and IGF-1-mediated vasorelaxation was significantly enhanced to a nearly normal level in the SHR-EX group. After endothelial denudation, blunted and comparable vasorelaxation was found among the three groups. Pretreatment with selective PI3K and NOS inhibitors attenuated insulin- and IGF-1-mediated vasorelaxation, and no significant difference was found among the three groups after the pretreatment. The aortic protein levels of the insulin receptor (IR), IGF-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1), and endothelial NOS (eNOS) were also significantly increased in the SHR-EX group compared with the other two groups. These results suggested that treadmill training elicited the amelioration of endothelium-dependent insulin/IGF-1-mediated vasorelaxation partly via the increased activation of PI3K and NOS, as well as the enhancement of protein levels of IR, IGF-1R, IRS-1, and eNOS, in hypertension.


Sign in / Sign up

Export Citation Format

Share Document