Exosomal MicroRNA-23-5p Derived from Bone Marrow Mesenchymal Stem Cells Relieves Inflammatory Response in Rheumatoid Arthritis

2022 ◽  
Vol 12 (5) ◽  
pp. 939-946
Author(s):  
Liangbang Wu ◽  
Zui Wang ◽  
Zhenhai Hou ◽  
Longbao Zheng ◽  
Zenghui Gu

We aimed to explore the mechanism underlying microRNA-23-5p from exosomes (exo-miR-23-5p) of BMSCs in rheumatoid arthritis (RA). The candidate related genes of miR-23-5p were screened in RA by bioinformatics analysis through gain- and loss-function method along with analysis of histopathological changes in mice and RAC2 expression as well as the level of pro-inflammatory factors. In vivo RA model was established to detect miR-23-5p’s effect on RA. miR-23-5p level was significantly reduced in RA cells and RAC2 was highly expressed. Expression of RAC2 was inhibited and targeted by miR-23-5p in RA. Exo-miR-23-5p treatment effectively alleviated joint destruction, reduced inflammatory factor secretion in tissues and serum, as well as decreased RAC2 expression in RA model. In conclusion, the miR-23-5p in the BMSC-exo delays the inflammatory response in RA, indicating that it might be a new target for treating RA.

2021 ◽  
Author(s):  
Jinju Li ◽  
Rongge Shao ◽  
Qiuwen Xie ◽  
XueKe Du

Abstract Purpose:Ulinastatin (UTI) is an endogenous protease inhibitor with potent anti-inflammatory, antioxidant and organ protective effects. The inhibitor has been reported to ameliorate inflammatory lung injury but precise mechanisms remain unclear. Methods: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). The number of neutrophils and the phagocytosis of apoptotic neutrophils were observed by Diff- Quick method. Lung injury was observed by HE staining .BALF cells were counted by hemocytometer and concentrations of protein plus inflammatory factors were measured with a BCA test kit. During in vitro experiments, RAW264.7 cells were pretreated with UTI (1000 and 5000U/ mL), stained with CellTrackerTM Green B0DIPYTM and HL60 cells added with UV-induced apoptosis and PKH26 Red staining. The expression of ERK5\Mer related proteins was detected by western blot and immunofluorescence.Results: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). UTI treatment enhanced the phagocytotic effect of mouse alveolar macrophages on neutrophils, alleviated lung lesions, decreased the pro-inflammatory factor and total protein content of BALF and increased levels of anti-inflammatory factors. in vitro experiments ,UTI enhanced the phagocytosis of apoptotic bodies by RAW264.7 cells in a dose-dependent manner. Increased expression levels of ERK5 and Mer by UTI were shown by Western blotting and immunofluorescence.Conclusions: UTI mediated the activation of the ERK5/Mer signaling pathway, enhanced phagocytosis of neutrophils by macrophages and improved lung inflammation. The current study indicates potential new clinical approaches for accelerating the recovery from lung inflammation.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Jianbing Hao ◽  
Jie Tang ◽  
Lei Zhang ◽  
Xin Li ◽  
Lirong Hao

Vascular calcification is a major complication of maintenance hemodialysis patients. Studies have confirmed that calcification mainly occurs in the vascular smooth muscle cells (VSMC) of the vascular media. However, the exact pathogenesis of VSMC calcification is still unknown. This study shows that the crosstalk between calcium and aldosterone via the allograft inflammatory factor 1 (AIF-1) pathway contributes to calcium homeostasis and VSMC calcification, which is a novel mechanism of vascular calcification in uremia. In vivo results showed that the level of aldosterone and inflammatory factors increased in calcified arteries, whereas no significant changes were observed in peripheral blood. However, the expression of inflammatory factors markedly increased in the peripheral blood of uremic rats without aortic calcification and gradually returned to normal levels with aggravation of aortic calcification. In vitro results showed that there was an interaction between calcium ions and aldosterone in macrophages or VSMC. Calcium induced aldosterone synthesis, and in turn, aldosterone also triggered intracellular calcium content upregulation in macrophages or VSMC. Furthermore, activated macrophages induced inflammation, apoptosis, and calcification of VSMC. Activated VSMC also imparted a similar effect on untreated VSMC. Finally, AIF-1 enhanced aldosterone- or calcium-induced VSMC calcification, and NF-κB inhibitors inhibited the effect of AIF-1 on VSMC. These in vivo and in vitro results suggest that the crosstalk between calcium ions and aldosterone plays an important role in VSMC calcification in uremia via the AIF-1/NF-κB pathway. Local calcified VSMC induced the same pathological process in surrounding VSMC, thereby contributing to calcium homeostasis and accelerating vascular calcification.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ilaria Floris ◽  
Víctor García-González ◽  
Belen Palomares ◽  
Kurt Appel ◽  
Beatrice Lejeune

Background. Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which can cause cartilage and bone damages as well as pain and disability. In order to prevent disease progression, reduce pain, and major symptoms of RA, one good strategy consists in targeting proinflammatory cytokines that have the key role in the vicious circle of synovial inflammation and pain. The micro-immunotherapy medicine (MIM) 2LARTH® targets cytokines involved in inflammation. Aim. The aim of the study is to evaluate the effect of the MIM compared to vehicle in an in vivo model of RA, induced in mice after immunization with articular bovine type II collagen. Methods. Vehicle and MIM were dissolved in pure water (1 capsule in 100 ml) and 100 µl was given by gavage daily for 14 days. To evaluate the severity of arthritis, wrist and ankle thickness was determined, paw edema was measured, and a clinical score from 0 to 4 was established. Furthermore, histological analysis was performed. To evaluate systemic inflammation, circulating levels of IL-1β and TNF-α were measured by ELISA. Results. Ankle thickness was found to be significantly reduced in MIM-treated mice compared to vehicle-treated mice (P<0.05) and compared to untreated me (P<0.01). Paw edema was reduced, as well as clinical score attributed to MIM-treated mice in comparison with vehicle-treated mice and untreated CIA mice (P<0.01). In line with these results, histological analysis confirmed that MIM reduced inflammation and joint destruction in comparison to controls. No significant changes were found in plasmatic IL-1β levels between CIA and controls, while the levels of TNF-α significantly increased in the CIA group, and were lowered in MIM-treated mice (P<0.05 vs. vehicle and vs. CIA). Conclusion. The results indicate that the tested medicine reduces inflammation, histological, and clinical signs of RA in a CIA model.


2003 ◽  
Vol 197 (11) ◽  
pp. 1573-1583 ◽  
Author(s):  
Jong-Dae Ji ◽  
Ioannis Tassiulas ◽  
Kyung-Hyun Park-Min ◽  
Ani Aydin ◽  
Ingrid Mecklenbräuker ◽  
...  

Interleukin-10 (IL-10) is a potent deactivator of myeloid cells that limits the intensity and duration of immune and inflammatory responses. The activity of IL-10 can be suppressed during inflammation, infection, or after allogeneic tissue transplantation. We investigated whether inflammatory factors suppress IL-10 activity at the level of signal transduction. Out of many factors tested, only ligation of Fc receptors by immune complexes inhibited IL-10 activation of the Jak-Stat signaling pathway. IL-10 signaling was suppressed in rheumatoid arthritis joint macrophages that are exposed to immune complexes in vivo. Activation of macrophages with interferon-γ was required for Fc receptor–mediated suppression of IL-10 signaling, which resulted in diminished activation of IL-10–inducible genes and reversal of IL-10–dependent suppression of cytokine production. The mechanism of inhibition involved decreased cell surface IL-10 receptor expression and Jak1 activation and was dependent on protein kinase C delta. These results establish that IL-10 signaling is regulated during inflammation and identify Fc receptors and interferon-γ as important regulators of IL-10 activity. Generation of macrophages refractory to IL-10 can contribute to pathogenesis of inflammatory and infectious diseases characterized by production of interferon-γ and immune complexes.


2020 ◽  
Author(s):  
Yang Jiao ◽  
Jianjian Wang ◽  
Huixue Zhang ◽  
Yuze Cao ◽  
Yang Qu ◽  
...  

Abstract Background Microglia are rapidly activated after ischemic stroke and participate in the occurrence of neuroinflammation, which exacerbates the injury of ischemic stroke. Receptor Interacting Serine Threonine Kinase 1 (RIPK1) is thought to be involved in the development of inflammatory responses, but its role in ischemic microglia remains unclear. Here, we applied recombinant human thioredoxin-1 (rhTrx-1), a potential neuroprotective agent, to explore the role of rhTrx-1 in inhibiting RIPK1-mediated neuroinflammatory responses in microglia. Method Middle cerebral artery occlusion (MCAO) and Oxygen and glucose deprivation (OGD) were conducted for in vivo and in vitro experimental stroke models. The expression of RIPK1 in microglia after ischemia was examined. The inflammatory response of microglia was analyzed after treatment with rhTrx-1 and Necrostatin-1 (Nec-1, inhibitors of RIPK1), and the mechanisms were explored. In addition, the effects of rhTrx-1 on neurobehavioral deficits and cerebral infarct volume were examined. Results RIPK1 expression was detected in microglia after ischemia. Molecular docking results showed that rhTrx-1 could directly bind to RIPK1. In vitro experiments found that rhTrx-1 reduced necroptosis, mitochondrial membrane potential damage, Reactive oxygen species (ROS) accumulation and NLR Family, pyrin domain-containing 3 protein (NLRP3) inflammasome activation by inhibiting RIPK-1 expression, and regulated microglial M1/M2 phenotypic changes, thereby reducing the release of inflammatory factors. Consistently, in vivo experiments found that rhTrx-1 treatment attenuated cerebral ischemic injury by inhibiting the inflammatory response. Conclusion Our study demonstrates the role of RIPK1 in microglia-arranged neuroinflammation after cerebral ischemia. Administration of rhTrx-1 provides neuroprotection in ischemic stroke-induced microglial neuroinflammation by inhibiting RIPK1 expression.


2021 ◽  
Vol 17 ◽  
pp. 174480692110418
Author(s):  
Wei Sun ◽  
Yijun Zhang ◽  
Guanghui Wang

Background It has been increasingly reported that microRNAs (miRNAs) are related to rheumatoid arthritis (RA) pathogenesis. This present research was conducted to analyze the functions of miR-137 and the underlying molecular mechanism in RA progression. Methods Differentially expressed miRNAs in RA patients were analyzed using microarray-based analyses. Next, experiments involving miR-137 overexpression were performed to analyze the role of miR-137 in human fibroblast-like synoviocytes-RA (HFLS-RA) using cell counting kit-8 (CCK-8) assay, EdU staining, Transwell assay and flow cytometry, respectively. The function of miR-137 in inflammation was determined using ELISA. The binding relationship between miR-137 and LSD1 was confirmed by dual-luciferase reporter gene assay and ChIP test. Besides, a rat model with RA was established for in vivo experiments. Results miR-137 was downregulated in RA tissues and cells, which was negatively correlated with inflammatory factors. Upregulated miR-137 suppressed growth, migration and invasion of HFLS-RA, but promoted apoptosis. Lysine-specific demethylase-1 (LSD1) was a target of miR-137 and could be negatively regulated by miR-137. Moreover, LSD1 could activate REST through demethylation, while the REST/mTOR pathway induced levels of pro-inflammatory factors in RA. We observed the similar results in our in vivo study. Conclusion This study suggested that miR-137 reduced LSD1 expression to inhibit the activation of REST/mTOR pathway, thus preventing against inflammation and ameliorating RA development. Our research may offer new insights into treatment of RA.


2021 ◽  
Author(s):  
Baishun Li ◽  
Liyang Guo ◽  
Ying He ◽  
Xinran Tu ◽  
Jialin Zhong ◽  
...  

Abstract Pulpitis is a commonly seen oral inflammation condition in clinical practice, it can cause much pain for the patient and may induce infections in other systems. Much is still unknown for the pathogenic mechanism of pulpitis. In this work, we discovered that the expression of miR-155 was associated with dental pulpal inflammation both in vivo and in vitro. Experiments on odontoblast cell line MDPC-23 showed miR-155 could act as a positive regulator by increasing the production of pro-inflammatory cytokines IL-1β and IL-6 during inflammatory responses, whereas knockdown of miR-155 can reverse the effects. Bioinformatics analysis demonstrated that SHIP1 is a direct target of miR-155 in odontoblasts, this result was further verified at both mRNA and protein level. Inhibition of miR-155 resulted in the downregulation of inflammation factors, while co-transfection of si-SHIP1 and miR-155 inhibitor promoted the inflammatory responses. Treatment with miR-155 mimic or si-SHIP1 up-regulated the protein level of p-PI3K and p-AKT. By contrast, miR-155 inhibitor exerted the opposite effects. miR-155 mimics could upregulated the gene expression of IL-1β and IL-6. Co-transfection of LY294002 and miR-155 mimic attenuated the inflammatory responses. Consistent with in vitro results, miR-155-/- mice could alleviate inflammatory response, as well as decrease the activation of p-PI3K and p-AKT, whereas increase the activation of SHIP1. In conclusion, these data revealed a novel role for miR-155 in regulation of dental pulpal inflammatory response by targeting SHIP1 through PI3K/AKT signaling pathway.


2019 ◽  
Author(s):  
Yani Wang ◽  
Rui Liu ◽  
Pengfei Zhao ◽  
Qian Zhang ◽  
Yingheng Huang ◽  
...  

Abstract Background: Previous studies have shown that adiponectin (APN) is involved in the pathogenesis of rheumatoid arthritis (RA). The proinflammatory effect of APN is mainly mediated adiponectin receptor 1 (AdipoR1). The high expression of AdipoR1 have been suggested in RA synovial tissue. This study was aimed to investigate the effects of AdipoR1 in inflammation and bone erosion in collagen-induced arthritis (CIA) mice, and to further explore the underlying mechanisms. Methods: The expression of APN and AdipoR1 in synovial tissue of RA and osteoarthritis (OA) patient was tested by qPCR and western blot. RA synovial fibroblasts (RASFs) were stimulated with APN, IL-6 or TNF-α respectively. The expression of AdipoR1 on RASFs were tested by flow cytometry. To prove the pathogenic role, AdipoR1 was silenced in a human rheumatoid arthritis synovial fibroblast cell line (MH7A) and local joint of CIA mice by specific short hairpin RNAs (shRNAs) using a lentiviral delivery system. The levels of proliferation, apoptosis and inflammatory factors on MH7A were assessed in vitro. Local AdipoR1 knockdown on CIA mice were further estimated by arthritis clinical scores, inflammatory cytokine expression, micro-CT, H&E staining and receptor activator of nuclear factor к B ligand (RANKL) / osteoprotegerin (OPG) in vivo. Results: We found that the levels of APN and AdipoR1 expression were significantly higher in RASFs and the expression of AdipoR1 was upregulated by APN in RASFs. Silencing AdipoR1 could effectively reduce lipopolysaccharides (LPS) induced proliferation of MH7A cells, promote their apoptosis, and reduce the release of inflammatory factors. In CIA mice, local silencing AdipoR1 in arthritis markedly reduced joint inflammation and alleviated bone erosion and osteoporosis in vivo. Furthermore, local silencing AdipoR1 inhibited receptor activator of nuclear factor к B ligand (RANKL) expression and decreased RANKL / osteoprotegerin (OPG) ratio in knees and ankles of CIA mice. Conclusions: This study suggests that AdipoR1 plays a key role in the development of RA and silencing AdipoR1 might be a new target for the clinical treatment of RA.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009107
Author(s):  
M. Foulon ◽  
M. Robbe-Saule ◽  
J. Manry ◽  
L. Esnault ◽  
Y. Boucaud ◽  
...  

Mycolactone, a lipid-like toxin, is the major virulence factor of Mycobacterium ulcerans, the etiological agent of Buruli ulcer. Its involvement in lesion development has been widely described in early stages of the disease, through its cytotoxic and immunosuppressive activities, but less is known about later stages. Here, we revisit the role of mycolactone in disease outcome and provide the first demonstration of the pro-inflammatory potential of this toxin. We found that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory cytokine, in a TLR2-dependent manner, targeting NLRP3/1 inflammasomes. We show our data to be relevant in a physiological context. The in vivo injection of these mycolactone-containing vesicles induced a strong local inflammatory response and tissue damage, which were prevented by corticosteroids. Finally, several soluble pro-inflammatory factors, including IL-1β, were detected in infected tissues from mice and Buruli ulcer patients. Our results revisit Buruli ulcer pathophysiology by providing new insight, thus paving the way for the development of new therapeutic strategies taking the pro-inflammatory potential of mycolactone into account.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Huili Li ◽  
Ajun Wan

Rheumatoid arthritis is a chronic inflammatory disease characterized by synovial hyperplasia and progressive joint destruction. The impaired apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) is pivotal in this process. However, the molecular mechanisms responsible for the reduced apoptosis are not fully understood. Both nitric oxide and thioredoxin 1 as two important mediators are widely investigated in the pathogenesis of rheumatoid arthritis. Interestingly, studies have showed that thioredoxin 1 may serve as a master regulator of S-nitrosylation of caspase-3 to fine-tune apoptosisin vivo. Thus, it is anticipated that further investigations on the role of thioredoxin 1 in the S-nitrosylation and denitrosylation of caspase-3 in RA-FLS will likely provide a novel understanding of mechanisms implicated in the impaired apoptosis of RA-FLS. In this paper, we will provide an overview on pathways involved in the reduced apoptosis of RA-FLS and then discuss specially the possible roles of nitric oxide and the thioredoxin 1 redox system associated with apoptosis of RA-FLS.


Sign in / Sign up

Export Citation Format

Share Document