DsUnet: A New Network Structure for Detection and Segmentation of Ultrasound Breast Lesions

2020 ◽  
Vol 10 (3) ◽  
pp. 661-666 ◽  
Author(s):  
Shaoguo Cui ◽  
Moyu Chen ◽  
Chang Liu

Breast cancer is one of the leading causes of death among the women worldwide. The clinical medical system urgently needs an accurate and automatic breast segmentation method in order to detect the breast ultrasound lesions. Recently, some studies show that deep learning methods based on fully convolutional network, have demonstrated a competitive performance in breast ultrasound segmentation. However, some features are missed in the Unet in case of down-sampling that results in a low segmentation accuracy. Furthermore, there is a semantic gap between the feature maps of decoder and encoder in Unet, so the simple fusion of high and low level features is not conducive to the semantic classification of pixels. In addition, the poor quality of breast ultrasound also affects the accuracy of image segmentation. To solve these problems, we propose a new end-toend network model called Dense skip Unet (DsUnet), which consists of the Unet backbone, short skip connection and deep supervision. The proposed method can effectively avoid the missing of feature information caused by down-sampling and implement the fusion of multilevel semantic information. We used a new loss function to optimize the DsUnet, which is composed of a binary cross-entropy and dice coefficient. We employed the True Positive Fraction (TPF), False Positives per image (FPs) and F -measure as performance metrics for evaluating various methods. In this paper, we adopted the UDIAT 212 dataset and the experimental results validate that our new approach achieved better performance than other existing methods in detecting and segmenting the ultrasound breast lesions. When we used the DsUnet model and new loss function (binary cross-entropy + dice coefficient), the best performance indexes can be achieved, i.e., 0.87 in TPF, 0.13 in FPs/image and 0.86 in F-measure.

Author(s):  
Zhenzhen Yang ◽  
Pengfei Xu ◽  
Yongpeng Yang ◽  
Bing-Kun Bao

The U-Net has become the most popular structure in medical image segmentation in recent years. Although its performance for medical image segmentation is outstanding, a large number of experiments demonstrate that the classical U-Net network architecture seems to be insufficient when the size of segmentation targets changes and the imbalance happens between target and background in different forms of segmentation. To improve the U-Net network architecture, we develop a new architecture named densely connected U-Net (DenseUNet) network in this article. The proposed DenseUNet network adopts a dense block to improve the feature extraction capability and employs a multi-feature fuse block fusing feature maps of different levels to increase the accuracy of feature extraction. In addition, in view of the advantages of the cross entropy and the dice loss functions, a new loss function for the DenseUNet network is proposed to deal with the imbalance between target and background. Finally, we test the proposed DenseUNet network and compared it with the multi-resolutional U-Net (MultiResUNet) and the classic U-Net networks on three different datasets. The experimental results show that the DenseUNet network has significantly performances compared with the MultiResUNet and the classic U-Net networks.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1131 ◽  
Author(s):  
Li ◽  
Zhao ◽  
Zhang ◽  
Hu

Recently, many researchers have attempted to use convolutional neural networks (CNNs) for wildfire smoke detection. However, the application of CNNs in wildfire smoke detection still faces several issues, e.g., the high false-alarm rate of detection and the imbalance of training data. To address these issues, we propose a novel framework integrating conventional methods into CNN for wildfire smoke detection, which consisted of a candidate smoke region segmentation strategy and an advanced network architecture, namely wildfire smoke dilated DenseNet (WSDD-Net). Candidate smoke region segmentation removed the complex backgrounds of the wildfire smoke images. The proposed WSDD-Net achieved multi-scale feature extraction by combining dilated convolutions with dense block. In order to solve the problem of the dataset imbalance, an improved cross entropy loss function, namely balanced cross entropy (BCE), was used instead of the original cross entropy loss function in the training process. The proposed WSDD-Net was evaluated according to two smoke datasets, i.e., WS and Yuan, and achieved a high AR (99.20%) and a low FAR (0.24%). The experimental results demonstrated that the proposed framework had better detection capabilities under different negative sample interferences.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4616
Author(s):  
Sangyong Park ◽  
Yong Seok Heo

In this paper, we propose an efficient knowledge distillation method to train light networks using heavy networks for semantic segmentation. Most semantic segmentation networks that exhibit good accuracy are based on computationally expensive networks. These networks are not suitable for mobile applications using vision sensors, because computational resources are limited in these environments. In this view, knowledge distillation, which transfers knowledge from heavy networks acting as teachers to light networks as students, is suitable methodology. Although previous knowledge distillation approaches have been proven to improve the performance of student networks, most methods have some limitations. First, they tend to use only the spatial correlation of feature maps and ignore the relational information of their channels. Second, they can transfer false knowledge when the results of the teacher networks are not perfect. To address these two problems, we propose two loss functions: a channel and spatial correlation (CSC) loss function and an adaptive cross entropy (ACE) loss function. The former computes the full relationship of both the channel and spatial information in the feature map, and the latter adaptively exploits one-hot encodings using the ground truth labels and the probability maps predicted by the teacher network. To evaluate our method, we conduct experiments on scene parsing datasets: Cityscapes and Camvid. Our method presents significantly better performance than previous methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253202
Author(s):  
Yanjun Guo ◽  
Xingguang Duan ◽  
Chengyi Wang ◽  
Huiqin Guo

This paper establishes a fully automatic real-time image segmentation and recognition system for breast ultrasound intervention robots. It adopts the basic architecture of a U-shaped convolutional network (U-Net), analyses the actual application scenarios of semantic segmentation of breast ultrasound images, and adds dropout layers to the U-Net architecture to reduce the redundancy in texture details and prevent overfitting. The main innovation of this paper is proposing an expanded training approach to obtain an expanded of U-Net. The output map of the expanded U-Net can retain texture details and edge features of breast tumours. Using the grey-level probability labels to train the U-Net is faster than using ordinary labels. The average Dice coefficient (standard deviation) and the average IOU coefficient (standard deviation) are 90.5% (±0.02) and 82.7% (±0.02), respectively, when using the expanded training approach. The Dice coefficient of the expanded U-Net is 7.6 larger than that of a general U-Net, and the IOU coefficient of the expanded U-Net is 11 larger than that of the general U-Net. The context of breast ultrasound images can be extracted, and texture details and edge features of tumours can be retained by the expanded U-Net. Using an expanded U-Net can quickly and automatically achieve precise segmentation and multi-class recognition of breast ultrasound images.


2021 ◽  
Vol 7 (2) ◽  
pp. 16
Author(s):  
Pedro Furtado

Image structures are segmented automatically using deep learning (DL) for analysis and processing. The three most popular base loss functions are cross entropy (crossE), intersect-over-the-union (IoU), and dice. Which should be used, is it useful to consider simple variations, such as modifying formula coefficients? How do characteristics of different image structures influence scores? Taking three different medical image segmentation problems (segmentation of organs in magnetic resonance images (MRI), liver in computer tomography images (CT) and diabetic retinopathy lesions in eye fundus images (EFI)), we quantify loss functions and variations, as well as segmentation scores of different targets. We first describe the limitations of metrics, since loss is a metric, then we describe and test alternatives. Experimentally, we observed that DeeplabV3 outperforms UNet and fully convolutional network (FCN) in all datasets. Dice scored 1 to 6 percentage points (pp) higher than cross entropy over all datasets, IoU improved 0 to 3 pp. Varying formula coefficients improved scores, but the best choices depend on the dataset: compared to crossE, different false positive vs. false negative weights improved MRI by 12 pp, and assigning zero weight to background improved EFI by 6 pp. Multiclass segmentation scored higher than n-uniclass segmentation in MRI by 8 pp. EFI lesions score low compared to more constant structures (e.g., optic disk or even organs), but loss modifications improve those scores significantly 6 to 9 pp. Our conclusions are that dice is best, it is worth assigning 0 weight to class background and to test different weights on false positives and false negatives.


2018 ◽  
Vol 4 (9) ◽  
pp. 107 ◽  
Author(s):  
Mohib Ullah ◽  
Ahmed Mohammed ◽  
Faouzi Alaya Cheikh

Articulation modeling, feature extraction, and classification are the important components of pedestrian segmentation. Usually, these components are modeled independently from each other and then combined in a sequential way. However, this approach is prone to poor segmentation if any individual component is weakly designed. To cope with this problem, we proposed a spatio-temporal convolutional neural network named PedNet which exploits temporal information for spatial segmentation. The backbone of the PedNet consists of an encoder–decoder network for downsampling and upsampling the feature maps, respectively. The input to the network is a set of three frames and the output is a binary mask of the segmented regions in the middle frame. Irrespective of classical deep models where the convolution layers are followed by a fully connected layer for classification, PedNet is a Fully Convolutional Network (FCN). It is trained end-to-end and the segmentation is achieved without the need of any pre- or post-processing. The main characteristic of PedNet is its unique design where it performs segmentation on a frame-by-frame basis but it uses the temporal information from the previous and the future frame for segmenting the pedestrian in the current frame. Moreover, to combine the low-level features with the high-level semantic information learned by the deeper layers, we used long-skip connections from the encoder to decoder network and concatenate the output of low-level layers with the higher level layers. This approach helps to get segmentation map with sharp boundaries. To show the potential benefits of temporal information, we also visualized different layers of the network. The visualization showed that the network learned different information from the consecutive frames and then combined the information optimally to segment the middle frame. We evaluated our approach on eight challenging datasets where humans are involved in different activities with severe articulation (football, road crossing, surveillance). The most common CamVid dataset which is used for calculating the performance of the segmentation algorithm is evaluated against seven state-of-the-art methods. The performance is shown on precision/recall, F 1 , F 2 , and mIoU. The qualitative and quantitative results show that PedNet achieves promising results against state-of-the-art methods with substantial improvement in terms of all the performance metrics.


2021 ◽  
Vol 10 (11) ◽  
pp. 773
Author(s):  
Santi Phithakkitnukooon ◽  
Karn Patanukhom ◽  
Merkebe Getachew Demissie

Dockless electric scooters (e-scooter) have emerged as a green alternative to automobiles and a solution to the first- and last-mile problems. Demand anticipation, or being able to accurately predict spatiotemporal demand of e-scooter usage, is one supply–demand balancing strategy. In this paper, we present a dockless e-scooter demand prediction model based on a fully convolutional network (FCN) coupled with a masking process and a weighted loss function, namely, masked FCN (or MFCN). The MFCN model handles the sparse e-scooter usage data with its masking process and weighted loss function. The model is trained with highly correlated features through our feature selection process. Next-hour and next 24-h prediction schemes have been tested for both pick-up and drop-off demands. Overall, the proposed MFCN outperforms other baseline models including a naïve forecasting, linear regression, and convolutional long short-term memory networks with mean absolute errors of 0.0434 and 0.0464 for the next-hour pick-up and drop-off demand prediction, respectively, and the errors of 0.0491 and 0.0501 for the next 24-h pick-up and drop-off demand prediction, respectively. The developed MFCN expands the collection of deep learning techniques that can be applied in the transportation domain, especially spatiotemporal demand prediction.


2021 ◽  
pp. 37-38
Author(s):  
Snehal Santosh Rathi ◽  
Sonali Mhaske Kadam

INTRODUCTION: The four main roles of ultrasound in Breast imaging are-primary screening, supplemental screening, diagnosis and Interventional procedures. Palpable masses, abnormal nipple discharge and mammographic abnormalities constitute the most common indication for targeted Breast Ultrasound. AIM: To study the role of Ultrasound in evaluating Breast lesions and characterising them as Benign or Malignant. MATERIAL AND METHODS:This is a Retrospective analysis conducted in Department of Radiology, MGM Medical College and Hospital, Kamothey, Navi Mumbai from February 2021 to June 2021. A total of 136 patients with signs and symptoms related to breast lesions were screened. CONCLUSION: The advent of high frequency probe, easy accessibility, cost effectiveness, reliability and relatively easy to perform makes ultrasound as the prime modality of choice for screening breast lesions.


Sign in / Sign up

Export Citation Format

Share Document