Design of a Composite Encapsulation for Concentrated Photovoltaic Systems With Improved Performance

Author(s):  
Kabeer Raza ◽  
Syed Sohail Akhtar ◽  
Abul Fazal M. Arif ◽  
Abbas Saeed Hakeem

Abstract Most of the currently used encapsulants are inefficient for cooled concentrated photovoltaic (CPV) systems. The encapsulant of cells for CPV systems, must have an optimum combination of thermal conductivity, coefficient of thermal expansion and long term shear modulus. In this work an improved backside composite encapsulation is designed and developed that can provide increased power output and longer life by enhancing the effectiveness of cooling and reducing thermal stresses. The best combination of material properties is identified through parametric studies on finite element model of CPV laminate using ethylene vinyl acetate as datum line. It is found that increasing thermal conductivity from 0.311 to 0.75 W/mK can improve the cooling and hence the power production by 2%. While long term shear modulus and coefficient of thermal expansion needs to be reduced for a longer service life. Using in-house built material design codes, optimum combinations of matrix and filler were identified that could provide the set range of properties. In line with material design code, a total of only four samples using thermoplastic polyurethane as matrix and Al2O3 or AlN as fillers were synthesized to validate the design experimentally. The material properties were measured and used in the parent finite element model to evaluate the performance of the experimentally developed material and to validate the parametric studies. A good agreement is found between the experimental and computational results and hence the overall methodology is found effective for application focused design and development of composite materials. It is expected that this material design and development approach will provide a useful guideline to the CPV manufacturing industries.

2007 ◽  
Vol 04 (04) ◽  
pp. 653-670 ◽  
Author(s):  
H. C. JUNG ◽  
S. KRUMDIECK

Laser forming is a flexible sheet metal manufacturing technique capable of producing various shapes, without hard tools and external forces, by irradiation across the surface of the metal piece. A three-dimensional thermal-elasto-plastic (TEP) finite element model for a straight line laser forming process has been developed during the course of this study, which simulates bend angles and temperature distributions. Laser forming process optimization and material sensitivity are investigated. In order to seek the optimal process conditions to generate a desired bend angle in the multi-scan laser bending process, an optimization algorithm based on the approximation of objective function and state variables is integrated into the numerical model. An optimal set of process parameters such as laser power, scan speed, beam diameter and the number of scans are obtained with optimization procedure. In order to assess process sensitivity to material roperties, associations between bend angle and material properties are statistically determined using the Pearson product-moment correlation coefficient via Monte Carlo simulations, for which a large number of the finite element simulations are carried out. The material properties of interest include the coefficient of thermal expansion, thermal conductivity, specific heat, modulus of elasticity, and Poisson's ratio. Results show that the process optimization coupled with finite element analysis can be used to determine processing parameters, and that the material properties of primary importance are the coefficient of thermal expansion, thermal conductivity and specific heat.


Author(s):  
Melody Arthur Verges ◽  
Geetha Chilakamarthi

The influence of underfill material properties on the fatigue life of a Ball Grid Array (BGA) package in the presence of thermal cycling is investigated in this study. The underfill material properties that are varied include Young’s modulus, Poisson’s ratio, and the coefficient of thermal expansion. The range in values are in accordance with typical underfills used in packages today. A finite element model is created using general purpose Ansys code by assuming that there exists an infinite array of solder interconnects, cylindrical in shape, surrounded by underfill material. The finite element geometry generated consists of a unit cell of concentric cylinders, with the inner being solder material and the outer being underfill material. The interconnect material is modeled as eutectic solder that behaves elastically-perfectly plastic. The Mode I cyclic stresses in the solder are determined as a temperature loading is applied. These stresses are then compared to the residual compressive stresses that are induced as a result of underfill shrinkage upon curing. Results suggest that Mode I stresses induced in the interconnects upon thermal cycling are not negligible in comparison to the beneficial compression that they provide upon curing. Even in the presence of this residual compression, for several material combinations a substantial amount of tension is induced in the connections while being cycled.


1992 ◽  
Vol 114 (4) ◽  
pp. 470-472 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Edward Jih ◽  
Bruce E. Artz ◽  
Larry W. Cathey

When modeling the thermomechanical behavior of electronic packages, engineers often need to include the temperature dependence of coefficients of thermal expansion (CTE) of materials involved in the finite element model. In ABAQUS some input parameters associated with such temperature dependent CTE are not clearly defined, and directions to determine the value of these parameters are not given. Misinterpretation of these variables can result in serious errors in the finite element result. This brief tends to illustrate in detail the implementation steps of the temperature dependent CTE in ABAQUS and presents an error analysis so that a quantitative measure of the error can be obtained. The information presented here is regarded critical to those who are using ABAQUS with temperature dependent CTE.


1998 ◽  
Vol 546 ◽  
Author(s):  
V. Ziebartl ◽  
O. Paul ◽  
H. Baltes

AbstractWe report a new method to measure the temperature-dependent coefficient of thermal expansion α(T) of thin films. The method exploits the temperature dependent buckling of clamped square plates. This buckling was investigated numerically using an energy minimization method and finite element simulations. Both approaches show excellent agreement even far away from simple critical buckling. The numerical results were used to extract Cα(T) = α0+α1(T−T0 ) of PECVD silicon nitride between 20° and 140°C with α0 = (1.803±0.006)×10−6°C−1, α1 = (7.5±0.5)×10−9 °C−2, and T0 = 25°C.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Jungkyu Lee ◽  
Youfeng Zhang ◽  
Robert M. Crone ◽  
Narayanan Ramakrishnan ◽  
Andreas A. Polycarpou

Use of nanometer thin films has received significant attention in recent years because of their advantages in controlling friction and wear. There have been significant advances in applications such as magnetic storage devices, and there is a need to explore new materials and develop experimental and theoretical frameworks to better understand nanometer thick coating systems, especially wear characteristics. In this work, a finite element model is developed to simulate the sliding wear between the protruded pole tip in a recording head (modeled as submicrometer radius cylinder) and a rigid asperity on the disk surface. Wear is defined as plastically deformed asperity and material yielding. Parametric studies reveal the effect of the cylindrical asperity geometry, material properties, and contact severity on wear. An Archard-type wear model is proposed, where the wear coefficients are directly obtained through curve fitting of the finite element model, without the use of an empirical coefficient. Limitations of such a model are also discussed.


Author(s):  
P.J. Huang ◽  
J.J. Swab ◽  
P.J. Patel ◽  
W.S. Chu

Abstract The development of thermal barrier coatings (TBCs) for diesel engines has been driven by the potential improvements in engine power and fuel efficiency that TBCs represent. TBCs have been employed for many years to reduce corrosion of valves and pistons because of their high temperature durability and thermal insulative properties. There are research programs to improve TBCs wear resistance to allow for its use in tribologically intensive areas of the engine. This paper will present results from tribological tests of ceria stabilized zirconia (CeSZ). The CeSZ was applied by atmospheric plasma spray process. Various mechanical and thermal properties were measured including wear, coefficient of thermal expansion, thermal conductivity, and microhardness. The results show the potential use of CeSZ in wear sensitive applications in diesel applications. Keywords: Thermal Barrier Coating, Diesel Engine, Wear, Thermal Conductivity, and Thermal Expansion


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


Sign in / Sign up

Export Citation Format

Share Document