Template Synthesis of Indium Nanowires Using Anodic Aluminum Oxide Membranes

2008 ◽  
Vol 8 (9) ◽  
pp. 4488-4493 ◽  
Author(s):  
Feng Chen ◽  
Adrian H. Kitai

Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire ∼60 μm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

2009 ◽  
Vol 23 (29) ◽  
pp. 3497-3501 ◽  
Author(s):  
SONG YUE ◽  
JUAN DU ◽  
YUAN ZHANG ◽  
DAPENG CHEN

Nanoporous anodic aluminum oxide membranes (AAM) were fabricated in oxalic acid electrolytes using a two-step anodization process. Membranes' structure and morphology were examined using scanning electron microscopy and X-ray diffraction after the annealing treatment. It was found that the crystallization temperature of the AAM are greatly dependent on their thickness. Aluminum is maintained under the protection of AAM even at 1100°C when the AAM's melting manifests.


2006 ◽  
Vol 05 (02n03) ◽  
pp. 273-278
Author(s):  
LIFANG CHENG ◽  
XINGTANG ZHANG ◽  
YUNCAI LI ◽  
YABIN HUANG ◽  
ZULIANG DU

Aligned silicon dioxide ( SiO 2) submicro-wires have been synthesized from tetraethyl orthosilicate (TEOS) by anodic aluminum oxide (AAO) template method. The products were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD).


2007 ◽  
Vol 22 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
Ching-Jung Yang ◽  
Chih Chen ◽  
Pu-Wei Wu ◽  
Jia-Min Shieh ◽  
Shun-Min Wang ◽  
...  

Ordered arrays of Ta2O5 nanodots were prepared using anodic aluminum oxide (AAO) as a template to support localized oxidation of TaN. Films of TaN (50 nm) and Al (1.5 μm) were deposited successively on p-type Si wafers and followed by a two-step anodization process at 40 V using oxalic acid as the electrolyte. The first anodization promoted growth of irregular AAO from overlying Al film. After chemical etching, the second anodization was performed to develop well-organized AAO channels and initiate oxidation of underlying TaN film to form tantalum oxide nanodots at the AAO pore bottoms. X-ray photoelectron spectroscopy results confirmed the chemical nature of nanodots as stoichmetric Ta2O5. X-ray diffraction demonstrated the amorphous characteristic of Ta2O5. As shown in field-emission scanning electron microscopy and transmission electron results, the Ta2O5 nanodots exhibited a hillock structure 80 nm in diameter at the bottom and 50 nm in height. We also synthesized 30-nm nanodots by adjusting AAO formation electrochemistry. This demonstrates the general applicability of the AAO template method for nanodot synthesis from nitride to oxide at a desirable size.


2007 ◽  
Vol 14 (06) ◽  
pp. 1039-1045
Author(s):  
HANSONG XUE ◽  
HUAJI LI ◽  
YU YI ◽  
HUIFANG HU

Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the ordering of the holes. The formation of the AAO film could be explained based on the present experiment and some former models.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 153 ◽  
Author(s):  
Bo-Chi Zheng ◽  
Jen-Bin Shi ◽  
Hsien-Sheng Lin ◽  
Po-Yao Hsu ◽  
Hsuan-Wei Lee ◽  
...  

Stannous oxide (SnO) nanowires were synthesized by a template and catalyst-free thermal oxidation process. After annealing a Sn nanowires-embedded anodic aluminum oxide (AAO) template in air, we obtained a large amount of SnO nanowires. SnO nanowires were first prepared by electrochemical deposition and an oxidization method based on an AAO template. The preparation of SnO nanowires used aluminum sheet (purity 99.999%) and then a two-step anodization procedure to obtain a raw alumina mold. Finally, transparent alumina molds (AAO template) were obtained by reaming, soaking with phosphoric acid for 20 min, and a stripping process. We got a pore size of < 20 nm on the transparent alumina mold. In order to meet electroplating needs, we produced a platinum film on the bottom surface of the AAO template by using a sputtering method as the electrode of electroplating deposition. The structure was characterized by X-ray diffraction (XRD). High resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectrometer (EDS) were used to observe the morphology. The EDS spectrum showed that components of the materials were Sn and O. FE-SEM results showed the synthesized SnO nanowires have an approximate length of ~10–20 μm with a highly aspect ratio of > 500. SnO nanowires with a Sn/O atomic ratio of ~1:1 were observed from EDS. The crystal structure of SnO nanowires showed that all the peaks within the spectrum lead to SnO with a tetragonal structure. This study may lead to the use of the 1D structure nanowires into electronic nanodevices and/or sensors, thus leading to nano-based functional structures.


2017 ◽  
Vol 8 (15) ◽  
pp. 2309-2316 ◽  
Author(s):  
Chien-Wei Chu ◽  
Yuji Higaki ◽  
Chao-Hung Cheng ◽  
Ming-Hsiang Cheng ◽  
Chun-Wei Chang ◽  
...  

A feasible processing of zwitterionic polymer-grafted anodic aluminum oxide (AAO) membranes by surface-initiated atom transfer radical polymerization (SI-ATRP) and the geometric effect were investigated.


Author(s):  
Iwona Dobosz

AbstractPorous anodic aluminum oxide membranes were fabricated via two-step anodization of aluminum in 0.3 M H2C2O4, 0.3 M H2SO4 and 0.17 M H3PO4 solutions. The parameters of the oxide film such as: pore diameter (Dp), interpore distance (Dc), porosity (P) and pore density (ρ) can be completely controlled by the operating conditions of the anodization. Additionally, the pore diameters and pore density can be controlled via a chemical treatment (pore opening/widening process). The effect of anodizing conditions such as the applied voltage, type of electrolyte and purity of the substrate on the rate of porous oxide growth are discussed. The obtained results were compared with the theoretical predictions and data that has been reported in the literature. The influence of the duration of chemical etching on the structural features of the oxide membranes was studied. On the based on qualitative and quantitative FFT analyzes and circularity maps, it was found that the nanostructures of anodized aluminum have the maximum order under certain specified conditions. The presence of alloying elements affects not only the rate of oxide growth but also the morphology of the anodic aluminum oxide. The rate of oxide growth depends on the electrolyte type and temperature. During chemical treatment of the oxide films pore diameter increases with the pore widening time and the highest pore widening was observed in phosphoric acid solution.


2021 ◽  
pp. 2101194
Author(s):  
Xue Zhao ◽  
Tong Jin ◽  
Wanru Gao ◽  
Guangda Niu ◽  
Jinsong Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document