Dye-Adsorption Capacity of High Surface-Area Hydrogen Titanate Nanosheets Processed via Modified Hydrothermal Method

2013 ◽  
Vol 13 (4) ◽  
pp. 3035-3045 ◽  
Author(s):  
Hareesh Padinhattayil ◽  
Rimesh Augustine ◽  
Satyajit Shukla
2017 ◽  
Vol 5 (9) ◽  
pp. 4352-4358 ◽  
Author(s):  
Wenyao Li ◽  
Jingru Wang ◽  
Guanjie He ◽  
Li Yu ◽  
Nuruzzaman Noor ◽  
...  

Ultralong hydrogen titanate nanobelts with a hollow structure and high surface area were synthesized to serve as promising materials for effective adsorption of antibiotics from contaminated water.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1540
Author(s):  
Muhammad Ahmad ◽  
Tehseen Nawaz ◽  
Mohammad Mujahid Alam ◽  
Yasir Abbas ◽  
Shafqat Ali ◽  
...  

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.


RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45244-45250 ◽  
Author(s):  
Yun Meng ◽  
Liyuan Zhang ◽  
Liyuan Chai ◽  
Wanting Yu ◽  
Ting Wang ◽  
...  

PmPD nanobelts with high adsorption performance have been synthesized by using CTAP as oxidants.


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


2020 ◽  
Vol 9 (4) ◽  
pp. 93-99
Author(s):  
Hung Mac Van ◽  
Tuan Vu Anh

Corals-like molybdenum disulfide (MoS2) have been successfully synthesized via the hydrothermal method. The as-prepared MoS2 material with a high surface area of 83.9 m2.g-1 was used for the removal of tartrazine from an aqueous solution. The effects of parameters including contact time, MoS2 dosage, and solution pH on adsorption capacity were studied. The optimal dosage of MoS2 for removing tartrazine was 0.08 g and the removal efficiency of tartrazine reached 81.5 % for 100 min of adsorption. The adsorption kinetics studies were carried out using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The results showed that the pseudo-second-kinetic model better described the adsorption kinetics of tartrazine on MoS2 and film diffusion was the rate-limiting step. In addition, the adsorption capacity of MoS2 was also performed with various organic dyes such as nile blue, janus green B, and congo red.


2018 ◽  
Vol 35 (6) ◽  
pp. 067501
Author(s):  
Hui-Fang Yang ◽  
Ling-Zhi Tang ◽  
Qiang Sun ◽  
Lei Sun ◽  
Zhen-Hua Li ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1016 ◽  
Author(s):  
Monickarla da Silva ◽  
Felipe Barbosa ◽  
Marco Morales Torre ◽  
Jhonny Villarroel-Rocha ◽  
Karim Sapag ◽  
...  

The mixture containing alloy and oxide with iron-based phases has shown interesting properties compared to the isolated species and the synergy between the phases has shown positive effect on dye adsorption. This paper describes the synthesis of Fe2SiO4-Fe7Co3-based nanocomposite dispersed in Santa Barbara Amorphous (SBA)-15 and its application in dye adsorption followed by magnetic separation. Thus, it was studied the variation of reduction temperature and amount of hydrogen used in synthesis and the effect of these parameters on the physicochemical properties of the iron and cobalt based oxide/alloy mixture, as well as the methylene blue adsorption capacity. The XRD and Mössbauer results, along with the temperature-programmed reduction (TPR) profiles, confirmed the formation of Fe2SiO4-Fe7Co3-based nanocomposites. Low-angle XRD, N2 isotherms, and TEM images show the formation of the SBA-15 based mesoporous support with a high surface area (640 m2/g). Adsorption tests confirmed that the material reduced at 700 °C using 2% of H2 presented the highest adsorption capacity (49 mg/g). The nanocomposites can be easily separated from the dispersion by applying an external magnetic field. The interaction between the dye and the nanocomposite occurs mainly by π-π interactions and the mixture of the Fe2SiO4 and Fe7Co3 leads to a synergistic effect, which favor the adsorption.


2019 ◽  
Vol 22 (6) ◽  
pp. 242-249 ◽  
Author(s):  
Yati B. Yuliyati ◽  
Solihudin Solihudin ◽  
Atiek Rostika Noviyanti

Reactive groups such as silanol, hydroxyl, and carbonyl groups in silica-lignin composites play a role in binding to chromium(VI) ions. The activation of functional groups in silica-lignin can be increased by the addition of an activator such as sodium periodate, which can also oxidize the lignin monomer (guaiasil) to ortho-quinone. This study aimed to obtain silica-lignin composites from rice husks activated by sodium periodate with a high surface area. Composite absorption was tested on chromium(VI) adsorption. Silica-lignin isolation was carried out by using the sol-gel method at concentrations of sodium hydroxide 5, 10, 15, and 20% (b/b). Silica-lignin activated with sodium periodate 10% (b/b) had the smallest particle size of about 8μm, with a surface area of 14.0888 m2.g-1 and followed Halsey isotherm adsorption model, with an adsorption capacity of 0.3054 mg.g-1.


Author(s):  
Nour Bouanimba ◽  
Nassima Laid ◽  
Razika Zouaghi ◽  
Tahar Sehili

Abstract The photocatalytic activities of TiO2 Degussa P25 and Millennium PCs (PC50, PC100, PC105 and PC500) were evaluated by the photocatalytic degradation of Bromothymol Blue (BTB). The relationship between the photocatalytic reaction and the adsorption of BTB on the TiO2 catalysts at acidic, natural and basic mediums of pH was investigated. The crystalline phase, average crystalline size and surface area of the catalyst were found to have a significant influence on the adsorption and photocatalytic activity of the TiO2 samples. The mixed phase of anatase/rutile (Degussa P25) was found to be the most efficient photocatalytical material than pure phase anatase (Millennium PCs) and faster degradation is observed for PC500 compared to other Millennium PCs, this was attributed to the high surface area of PC500. Within the PC50, PC100 and PC105 series, the photocatalytic efficiency increased with the decrease of the surface area. The COD and TOC removals increased slowly, however, the decolorization ratio of BTB increased rapidly at the same time. Thereafter, the efficiency of P25 and PC500 were compared in presence of H2O2, Cl− and HCO3− at different mediums of pH. H2O2 was found to enhance strongly the BTB degradation in presence of P25 with an optimum at natural pH. In contrast, the reaction was inhibited in the presence of PC500, due to the inhibition of dye adsorption. At different pH, the BTB degradation has been significantly inhibited in the presence of the mixtures of HCO3−/H2O2. In contrast, the mixtures of Cl−/H2O2 accelerate the BTB degradation at acidic pH.


Sign in / Sign up

Export Citation Format

Share Document