Intermetallic Growth Mechanism and Mechanical Properties of Post-Annealed SAC305 Solder Joints on Cu-Based Electrode Interfaces

2019 ◽  
Vol 19 (3) ◽  
pp. 1645-1648 ◽  
Author(s):  
Jihyun Beck ◽  
Yeon-Jin Baek ◽  
Siyoung Son ◽  
Jong-Bae Kim ◽  
Seung-Ho Yang ◽  
...  
2021 ◽  
Vol 18 (3) ◽  
pp. 137-144
Author(s):  
Dania Bani Hani ◽  
Raed Al Athamneh ◽  
Mohammed Aljarrah ◽  
Sa’d Hamasha

Abstract SAC-based alloys are one of the most common solder materials that are utilized to provide mechanical support and electrical connection between electronic components and the printed circuit board. Enhancing the mechanical properties of solder joints can improve the life of the components. One of the mechanical properties that define the solder joint structure integrity is the shear strength. The main objective of this study is to assess the shear strength behavior of SAC305 solder joints under different aging conditions. Instron 5948 Micromechanical Tester with a customized fixture is used to perform accelerated shear tests on individual solder joints. The shear strength of SAC305 solder joints with organic solderability preservative (OSP) surface finish is investigated at constant strain rate under different aging times (2, 10, 100, and 1,000 h) and different aging temperatures (50, 100, and 150°C). The nonaged solder joints are examined as well for comparison purposes. Analysis of variance (ANOVA) is accomplished to identify the contribution of each parameter on the shear strength. A general empirical model is developed to estimate the shear strength as a function of aging conditions using the Arrhenius term. Microstructure analysis is performed at different aging conditions using scanning electron microscope (SEM). The results revealed a significant reduction in the shear strength when the aging level is increased. An increase in the precipitates coarsening and intermetallic compound (IMC) layer thickness are observed with increased aging time and temperature.


Author(s):  
Abdullah Fahim ◽  
S. M. Kamrul Hasan ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Solder joints in electronic packages are frequently exposed to thermal cycling environment. Such exposures can occur in real life application as well as in accelerated thermal cycling tests used for the fatigue behavior characterization. Because of temperature variations and CTE mismatches of the assembly materials, cyclic temperature leads to damage accumulation and material property evolution in the solder joints. This eventually results in crack initiation, and subsequent crack growth and failure. In this study, the nanoindentation technique was used to understand the evolution of mechanical properties (modulus, hardness and creep behavior) of SAC305 BGA solder joints and Cu pad subjected to thermal cycling loading for various durations. In addition, microstructural changes in those joints that occur during thermal cycling were observed using both SEM and optical microscopy. BGA solder joint strip specimens were first prepared by cross sectioning BGA assemblies followed by surface polishing to facilitate SEM imaging and nanoindentation testing. The strip specimens were chosen to contain several single grain solder joints. This enabled large regions of solder material with equivalent mechanical behavior, which could then be indented several times after various durations of cycling. After preparation, the solder joint strip samples were thermally cycled from T = −40 to 125 °C in an environmental chamber. At various points in the cycling (e.g. after 0, 50, 100, and 250 cycles), the package was taken out from the chamber, and nanoindentation was performed on each single grain joint and joint Cu pads to obtain the modulus, hardness, and creep behavior at 25 °C. This allowed the evolution of the mechanical properties with the duration of thermal cycling to be determined. Moreover, microstructural changes were also observed after various durations of cycling using optical microscopy. From the nanoindentation test results, it was found that the modulus and hardness of the SAC305 solder joints dropped significantly with thermal cycling. However, the Cu pad did not show any change in the mechanical behavior during cycling. Moreover, the nanoindentation creep test results showed significant increases in the creep deformation for solder joints whereas Cu pad did now show any significant changes in creep behavior when both of them were subjected to thermal cycling up to 250 cycles.


2016 ◽  
Vol 45 (12) ◽  
pp. 6184-6191 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Junichi Koike ◽  
Jeong-Won Yoon ◽  
Sehoon Yoo

2020 ◽  
Vol 49 (9) ◽  
pp. 5391-5398
Author(s):  
Zongxiang Yao ◽  
Shan Jiang ◽  
Limeng Yin ◽  
Diying Ling ◽  
Zhongwen Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Gyuwon Jeong ◽  
Dong-Yurl Yu ◽  
Seongju Baek ◽  
Junghwan Bang ◽  
Tae-Ik Lee ◽  
...  

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.


Sign in / Sign up

Export Citation Format

Share Document