Study on the Method of Isolating the Aptamer from the Surface of HepG2 Cells

2020 ◽  
Vol 20 (6) ◽  
pp. 3373-3377 ◽  
Author(s):  
Zhukang Guo ◽  
Chao Wang ◽  
Song Li ◽  
Zhu Chen ◽  
Yan Deng ◽  
...  

The hepatocellular carcinoma (HCC) is a malignant tumor that occurs in the liver. It is a common malignant tumor in clinic. The main reason for its high mortality is its early latency. Therefore, how to accurately determine and test the hepatocellular carcinoma in the early stage has a very positive significance for the treatment. It is an important method for the early diagnosis of the hepatocellular carcinoma to use aptamers specifically binding to hepatocellular carcinoma cells, which has good application prospects. In order to improve the efficiency of aptamer selection of tumor cells, our group designed and developed an automated instrument for the aptamer selection. In this paper, the method to separate bound aptamers from the surface of HepG2 cells in automated selection process was studied, and the feasibility of separating binding aptamers from the HepG2 cell surface using ultrapure water and the effect of different temperature environments on its isolation were discussed. Results of the real-time fluorescent PCR and flow cytometry showed that ultrapure water could be used to isolate bound HepG2 cells and aptamers, and the concentration of the aptamers increased with the rise of the temperature between 25 and 80 degrees Celsius. This result will contribute to the improvement on the efficiency of automated selections for aptamers corresponding to HepG2 cells.

2020 ◽  
Vol 7 (3) ◽  
pp. 3659-3666
Author(s):  
Phuc Hong Vo ◽  
Sinh Truong Nguyen ◽  
Nghia Minh Do ◽  
Kiet Dinh Truong ◽  
Phuc Van Pham

Introduction: Cancer cells rely on glycolysis to generate energy and synthesize biomass for cell growth and proliferation (the Warburg effect). Recent studies have shown that citrate has an inhibitory effect on several cancer cells, such as human gastric cancer and ovarian cancer, by inhibiting glycolysis. In this study, we investigated the effects of citrate on the proliferation and apoptosis induction of hepatocellular carcinoma cells. Methods: HepG2 hepatocellular carcinoma cell line was used in this study. The cell proliferation was evaluated by Alamar blue assay. The apoptotic status of the HepG2 cells was recorded by Annexin V/7-AAD assay and caspase 3/7 activation assay. DNA fragmentation was evaluated by nucleus staining assay with Hoechst 33342. Results: The results showed that citrate is able to inhibit the proliferation of HepG2 cells and induce apoptosis in these cells. The initiation time of apoptosis is 4 hours after treatment with 10 mM citrate. Morphology characteristics of DNA fragmentation and broken membranes were also recorded in the apoptotic cells. Conclusion: In conclusion, our study demonstrates that citrate causes HepG2 cell death by the apoptosis pathway.


2014 ◽  
Vol 37 (1) ◽  
pp. 10 ◽  
Author(s):  
Yong Liu ◽  
Hai Huang ◽  
Bo Yuan ◽  
Tianping Luo ◽  
Jianchao Li ◽  
...  

Purpose: The multifunctional RNA-binding protein, CUGBP1, regulates splicing, stability and translation of mRNAs. Previous studies have shown that CUGBP1 is expressed at high levels in the liver, although its role in hepatocellular carcinoma is unknown. Our aim was to determine if CUGBP1 could regulate hepatocellular carcinoma growth. Methods: Expression levels of CUGBP1 were analyzed in 70 hepatic carcinoma and 20 normal hepatic tissue samples by immunohistochemistry (IHC). Using lentivirus-mediated short hairpin RNA (shRNA), CUGBP1 expression in human hepatocellular carcinoma HepG2 cells was knocked-down. The effect of CUGBP1 on hepatic cancer cell growth was investigated. Results: CUGBP1 was expressed in 85.7% hepatocellular carcinoma specimens compared with 50% in normal liver specimens. CUGBP1 silencing remarkably decreased the proliferation of HepG2 cells, as determined by MTT assay. Flow cytometry analysis showed that knock-down of CUGBP1 led to G0/G1 phase cell cycle arrest, accompanied by sub-G1 accumulation. Moreover, depletion of CUGBP1 resulted in downregulation of cyclin B1 and upregulation of cyclin D1. Conclusion: These results suggest that CUGBP1 is essential for the growth of hepatocellular carcinoma cells. Knockdown of CUGBP1 might be a potential therapeutic approach for human hepatocellular carcinoma.


2008 ◽  
Vol 89 (12) ◽  
pp. 3034-3038 ◽  
Author(s):  
Francesca Bonvicini ◽  
Claudia Filippone ◽  
Elisabetta Manaresi ◽  
Marialuisa Zerbini ◽  
Monica Musiani ◽  
...  

Parvovirus B19 has been associated with liver dysfunction and has been considered a potential aetiological agent of fulminant hepatitis and hepatitis-associated aplastic anaemia. The possible effects of B19 virus infection on the liver have been investigated using HepG2 hepatocellular carcinoma cells as a model system, but the reported results are inconsistent. To investigate this relationship further, this study followed the course of B19 virus infection of HepG2 cells in terms of viral DNA, RNA and protein production by quantitative PCR, RT-PCR and immunofluorescence assays. The data showed that B19 virus is able to bind and possibly enter HepG2 cells, but that viral genome replication or transcription is not supported and that viral proteins are not produced. As far as HepG2 cells can be considered a representative model system, any possible pathogenic role of B19 virus on the liver cannot be ascribed to infection or to a direct cytopathic effect on hepatocytes.


2016 ◽  
Vol 16 (3) ◽  
pp. 360-372 ◽  
Author(s):  
Jung Min Kim ◽  
In-Hu Hwang ◽  
Ik-Soon Jang ◽  
Min Kim ◽  
In Seok Bang ◽  
...  

Houttuynia cordata Thunb ( H cordata), a medicinal plant, has anticancer activity, as it inhibits cell growth and induces cell apoptosis in cancer. However, the potential anti-cancer activity and mechanism of H cordata for human liver cancer cells is not well understood. Recently, we identified hypoxia-inducible factor (HIF)-1A, Forkhead box (FOX)O3, and MEF2A as proapoptotic factors induced by H cordata, suggesting that HIF-1A, FOXO3, and MEF2A contribute to the apoptosis of HepG2 hepatocellular carcinoma cells. FOXO3 transcription factors regulate target genes involved in apoptosis. H cordata significantly increased the mRNA and protein expression of HIF-1A and FOXO3 and stimulated MEF2A expression in addition to increased apoptosis in HepG2 cells within 24 hours. Therefore, we determined the potential role of FOXO3 on apoptosis and on H cordata–induced MEF2A in HepG2 cells. HIF-1A silencing by siRNA attenuated MEF2A and H cordata–mediated FOXO3 upregulation in HepG2 cells. Furthermore, H cordata–mediated MEF2A expression enhanced caspase-3 and caspase-7, which were abolished on silencing FOXO3 with siRNA. In addition, H cordata inhibited growth of human hepatocellular carcinoma xenografts in nude mice. Taken together, our results demonstrate that H cordata enhances HIF-1A/FOXO3 signaling, leading to MEF2A upregulation in HepG2 cells, and in parallel, it disturbs the expression of Bcl-2 family proteins (Bax, Bcl-2, and Bcl-xL), which results in apoptosis. Taken together, these findings demonstrate that H cordata promotes the activation of HIF-1A–FOXO3 and MEF2A pathways to induce apoptosis in human HepG2 hepatocellular carcinoma cells and is, therefore, a promising candidate for antitumor drug development.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Kyoung Jin Nho ◽  
Jin Mi Chun ◽  
Ho Kyoung Kim

Dianthus chinensisL. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract ofDianthus chinensisL. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ying Zhang ◽  
Qingsong Tie ◽  
Zhiwei Bao ◽  
Zhi Shao ◽  
Lan Zhang

Chemoresistance has become a primary hurdle in the therapeutic outcome of hepatocellular carcinoma. Substantial evidences have demonstrated that microRNAs (miRNAs) are closely associated with the chemoresistance of hepatocellular carcinoma (HCC). Our investigation is aimed at testifying the influence of microRNA-15a-5p (miR-15a-5p)/eukaryotic translation initiation factor 4E (eIF4E) on hepatocellular carcinoma resistance to pirarubicin (THP). In our study, miR-15a-5p expression was increased in THP-treated HepG2 cells. Downregulation of miR-15a-5p blocked cell growth and elevated cell apoptosis of HepG2 cells treated with THP. Moreover, eIF4E was verified as a direct target of miR-15a-5p by binding its 3 ′ -UTR, which was confirmed by luciferase report experiment. Additionally, eIF4E was negatively associated with the miR-15a-5p expression in HepG2 cells. Mechanically, eIF4E was proven as a specific downstream of miR-15a-5p and mediated the effects of miR-15a-5p on cell viability and apoptosis of HepG2 cells treated with THP. These findings supported that miR-15a-5p facilitated THP resistance of hepatocellular carcinoma cells by modulating eIF4E, thus providing an experimental basis that miR-15a-5p might act as a novel diagnostic target in hepatocellular carcinoma resistance to THP.


2020 ◽  
Vol 20 (3) ◽  
pp. 1292-1298
Author(s):  
Bing Wang ◽  
Wang-Xun Jin ◽  
Yun-Li Zhang ◽  
Ling Huang ◽  
Hai-Bin Ni ◽  
...  

Background: Hepatocellular carcinoma is one of the most common malignant tumors found all over the globe. Despite advances in surgery and chemotherapy, the five-year survival rate of patients with hepatocellular carcinoma is still low. It is known that the proliferation of hepatocellular carcinoma cells is closely related to the occurrence, development and prog- nosis of hepatocellular carcinoma. The present work investigates the expression of microRNA-489 (miR-489) in human hepatocellular carcinoma cells and its effect on the biological behavior of human hepatocellular carcinoma cells. Methods: The expression of miR-489 by fluorescence quantitative PCR detection in 30 patients with hepatoblastoma of liver cancer tissues and adjacent tissues was studied. Also, the determination of hepatoblastoma in four cell lines with differ- ent metastatic potential (HR8348, HCT116, HT29 and HEPG2) and the expression of miR-489 during miR-489 simulation process was studied. MTT assay, flow cytometry and Western blot analysis were performed to know the cell proliferation to detect the changes in cell cycle, apoptosis of cells, and SOX4 gene expression respectively. Results: RT-PCR results showed that the cells compared with pre-cancerous tissue, the expression level of miR-489 in hepatocellular carcinoma tissues than in adjacent tissue significantly decreased (P<0.05), and with liver cancer cell metastasis increased (P<0.05); analogue transfection constructed miR-489 overexpressing HEPG2 cell line by microRNA. MTT results showed that miR-489 can inhibit the proliferation of HEPG2 cells, the differences were statistically significant (P<0.05); flow cytometry results showed that miR-489 mimics was transfected into HEPG2 cells at 48 hours had no significant effect on cell cycle distribution (P > 0.05); but miR-489 expression could induce apoptosis, compared with the control group, the apoptosis of miR-489 mimics was significantly increased and the difference was statistically significant (P < 0.05). Conclusion: In conclusion, miR-489 can significantly inhibit the occurrence and development of hepatocellular carcinoma cells. The mechanism may be down regulated by the expression of SOX4 and inhibit cell proliferation. Further this study showed that the tumor cells SOX4 gene as a regulatory factor target the genes of miR-489 in hepatocellular carcinoma. Keywords: Hepatocellular carcinoma; mircroRNA-489; SOX4; apoptosis.


Author(s):  
V. Chandravadhana ◽  
Vijay Lobo ◽  
R. Vidhyavathi ◽  
E. Mohan Raj ◽  
Arun Kumar Ramu

Flavonoids, a class of normal polyphenolic mixes, restrain cell cycle movement and instigate apoptosis. This examination was performed to explore the anticancer effect of theaflavin, a natural flavonoid found in the leaves of tea plant Camellia sinensis. Although this molecule was found to inhibit several cancer cells, the specific anticancer action in liver cancer remains unexplored, especially in human hepatocellular carcinoma (HepG2) cells. Henceforth, the present study was designed to elucidate the anticancer activity in HepG2 cells, level of reactive oxygen species (ROS) in the cancer cells and tumour cell apoptosis. The action of theaflavin in provocation apoptosis was explored through the improved ROS by MTT assay and 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) method. As per the results obtained from the MTT assay, theaflavin had cell hindrance effect on HepG2 cells. The IC50 estimation of theaflavin to hindered cell development at 25, 50 and 75 μM concentration and instigating apoptosis through ROS improvement. The progressions in mitochondrial morphology, portion conditionally that diminished cell expansion, were seen in various concentrations of the drug treatment. In this manner, theaflavin might be useful as a chemotherapeutic agent for the treatment of liver cancer.


2016 ◽  
Vol 5 (3) ◽  
pp. 871-882 ◽  
Author(s):  
Yongbo Yu ◽  
Junchao Duan ◽  
Yang Yu ◽  
Yang Li ◽  
Yang Zou ◽  
...  

The present study investigated both autophagy and apoptosis in ICR mice and Human hepatocellular carcinoma cells (HepG2), and then explored the interactive mechanism between these two distinct cell death modalities in HepG2 cells.


2021 ◽  
Vol 11 (1) ◽  
pp. 135-141
Author(s):  
Sheng Zheng ◽  
Hua Yang ◽  
Yefei Chang ◽  
Dan Zhao ◽  
Juan Yang

We examined the effect of the BBC3 gene on hyperplasia and apoptosis in HepG2 cells and its underlying mechanism. Quantitative RT-PCR was used to determine the level of BBC3 expression in HL-7702 normal human liver cells and four different hepatocellular carcinoma cell lines (HepG2, HuH-7, HCCLM3 and MHCC97H). Transfection was performed with Lipofectamine 2000 reagent and the transfectants were divided into three groups: pcDNA-BBC3 group (transfected BBC3 over-expressing plasmid), pcDNA-NC group (transfected empty plasmid), and a Ctrl group (not transfected). Quantitative RT-PCR and western blot analysis were used to measure BBC3 expression. The CCK-8 assay was used to determine the effect of BBC3 on HepG2 cell proliferation. Flow cytometry was used for testing the effect of overexpressing BBC3 on apoptosis in HepG2 cells. The levels of cleaved-Caspase-3 (C-Caspase-3), cleaved-Caspase-9 (C-Caspase-9), and proteins associated with the p53 signaling pathway were assessed by western blot analysis. The level of BBC3 mRNA in HL-7702 normal human liver cells was significantly higher compared with that in human hepatocellular carcinoma cells including HepG2, HuH-7, HCCLM3 and MHCC97H (P < 0.05). The lowest level of BBC3 mRNA was observed in HepG2 cells. The level of BBC3 mRNA and protein in HepG2 cells were significantly higher compared with that of the pcDNA-NC group following transfection with a BBC3 overexpressing plasmid. HepG2 cell proliferation in the pcDNA-NC group was higher compared with that of the pcDNA-BBC3-transfected group (P < 0.05). The apoptotic rate and levels of cleaved-Caspase-3, cleaved-Caspase-9, p53, phospho-p53, and p21 protein in cells were higher compared with that of the pcDNA-NC group. No change was observed in the pcDNA-NC and Ctrl groups. The BBC3 gene was down-regulated in hepatocellular carcinoma cells. HepG2 cell proliferation can be inhibited and HepG2 cell apoptosis can be induced by the overexpression of BBC3 through activation of the p53 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document