Tea flavonoid theaflavin induces apoptosis in hepatocellular carcinoma cells through improving ROS level

Author(s):  
V. Chandravadhana ◽  
Vijay Lobo ◽  
R. Vidhyavathi ◽  
E. Mohan Raj ◽  
Arun Kumar Ramu

Flavonoids, a class of normal polyphenolic mixes, restrain cell cycle movement and instigate apoptosis. This examination was performed to explore the anticancer effect of theaflavin, a natural flavonoid found in the leaves of tea plant Camellia sinensis. Although this molecule was found to inhibit several cancer cells, the specific anticancer action in liver cancer remains unexplored, especially in human hepatocellular carcinoma (HepG2) cells. Henceforth, the present study was designed to elucidate the anticancer activity in HepG2 cells, level of reactive oxygen species (ROS) in the cancer cells and tumour cell apoptosis. The action of theaflavin in provocation apoptosis was explored through the improved ROS by MTT assay and 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) method. As per the results obtained from the MTT assay, theaflavin had cell hindrance effect on HepG2 cells. The IC50 estimation of theaflavin to hindered cell development at 25, 50 and 75 μM concentration and instigating apoptosis through ROS improvement. The progressions in mitochondrial morphology, portion conditionally that diminished cell expansion, were seen in various concentrations of the drug treatment. In this manner, theaflavin might be useful as a chemotherapeutic agent for the treatment of liver cancer.

2020 ◽  
Vol 7 (3) ◽  
pp. 3659-3666
Author(s):  
Phuc Hong Vo ◽  
Sinh Truong Nguyen ◽  
Nghia Minh Do ◽  
Kiet Dinh Truong ◽  
Phuc Van Pham

Introduction: Cancer cells rely on glycolysis to generate energy and synthesize biomass for cell growth and proliferation (the Warburg effect). Recent studies have shown that citrate has an inhibitory effect on several cancer cells, such as human gastric cancer and ovarian cancer, by inhibiting glycolysis. In this study, we investigated the effects of citrate on the proliferation and apoptosis induction of hepatocellular carcinoma cells. Methods: HepG2 hepatocellular carcinoma cell line was used in this study. The cell proliferation was evaluated by Alamar blue assay. The apoptotic status of the HepG2 cells was recorded by Annexin V/7-AAD assay and caspase 3/7 activation assay. DNA fragmentation was evaluated by nucleus staining assay with Hoechst 33342. Results: The results showed that citrate is able to inhibit the proliferation of HepG2 cells and induce apoptosis in these cells. The initiation time of apoptosis is 4 hours after treatment with 10 mM citrate. Morphology characteristics of DNA fragmentation and broken membranes were also recorded in the apoptotic cells. Conclusion: In conclusion, our study demonstrates that citrate causes HepG2 cell death by the apoptosis pathway.


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 1841-1845 ◽  
Author(s):  
Baiqi Wang ◽  
Hetao Chen ◽  
Rui Yang ◽  
Fang Wang ◽  
Ping Zhou ◽  
...  

The red signals from the cytoplasm of HCC cells reveal that the QD probes can specifically label liver cancer cells.


2020 ◽  
Vol 20 (3) ◽  
pp. 1292-1298
Author(s):  
Bing Wang ◽  
Wang-Xun Jin ◽  
Yun-Li Zhang ◽  
Ling Huang ◽  
Hai-Bin Ni ◽  
...  

Background: Hepatocellular carcinoma is one of the most common malignant tumors found all over the globe. Despite advances in surgery and chemotherapy, the five-year survival rate of patients with hepatocellular carcinoma is still low. It is known that the proliferation of hepatocellular carcinoma cells is closely related to the occurrence, development and prog- nosis of hepatocellular carcinoma. The present work investigates the expression of microRNA-489 (miR-489) in human hepatocellular carcinoma cells and its effect on the biological behavior of human hepatocellular carcinoma cells. Methods: The expression of miR-489 by fluorescence quantitative PCR detection in 30 patients with hepatoblastoma of liver cancer tissues and adjacent tissues was studied. Also, the determination of hepatoblastoma in four cell lines with differ- ent metastatic potential (HR8348, HCT116, HT29 and HEPG2) and the expression of miR-489 during miR-489 simulation process was studied. MTT assay, flow cytometry and Western blot analysis were performed to know the cell proliferation to detect the changes in cell cycle, apoptosis of cells, and SOX4 gene expression respectively. Results: RT-PCR results showed that the cells compared with pre-cancerous tissue, the expression level of miR-489 in hepatocellular carcinoma tissues than in adjacent tissue significantly decreased (P<0.05), and with liver cancer cell metastasis increased (P<0.05); analogue transfection constructed miR-489 overexpressing HEPG2 cell line by microRNA. MTT results showed that miR-489 can inhibit the proliferation of HEPG2 cells, the differences were statistically significant (P<0.05); flow cytometry results showed that miR-489 mimics was transfected into HEPG2 cells at 48 hours had no significant effect on cell cycle distribution (P > 0.05); but miR-489 expression could induce apoptosis, compared with the control group, the apoptosis of miR-489 mimics was significantly increased and the difference was statistically significant (P < 0.05). Conclusion: In conclusion, miR-489 can significantly inhibit the occurrence and development of hepatocellular carcinoma cells. The mechanism may be down regulated by the expression of SOX4 and inhibit cell proliferation. Further this study showed that the tumor cells SOX4 gene as a regulatory factor target the genes of miR-489 in hepatocellular carcinoma. Keywords: Hepatocellular carcinoma; mircroRNA-489; SOX4; apoptosis.


2021 ◽  
Vol 21 (2) ◽  
pp. 1054-1060
Author(s):  
Ming Jiang ◽  
Jing Jin ◽  
Xiaohui Ye ◽  
Jing Wang ◽  
Hongbo Shen ◽  
...  

This article explores the role of lysin nanocarriers in inducing apoptosis of human hepatocellular carcinoma cells and the possible molecular mechanisms. Cytotoxicity tests were performed in human fibroblast cell line MRC-5. Anti-cancer activity was tested in liver cancer cell lines HepG2 and HCCLM3. The results show that nanocarriers have a targeting effect on cancer cells, have high safety, and are good delivery vehicles for drugs. In this paper, the stability of lycopene and its degradation in aqueous solutions at different temperatures were studied, and the structure and mechanism of degradation products were determined. A new type of mesoporous silica nanocarrier was synthesized as a delivery carrier of lysin and its derivatives, which has a targeting effect on cancer cells and has a slow-release effect. Surface modification can improve circulation time and stability for future resistance in vivo. The cancer experiment laid the foundation. The results showed that the lysin nanocarriers inhibited the proliferation of HepG2 and HCCLM3 human liver cancer cells in a dependent manner. After the lysin nanocarriers acted on HepG2 human hepatocellular carcinoma cells for 48 h, the cell apoptosis rate was significantly increased by flow cytometry analysis. The carrier can significantly increase the levels of reactive oxygen species and malondialdehyde, and reduce the content of reduced glutathione and superoxide dismutase. At the same time, the lysin nanocarrier can down-regulate the expression of Nrf2 and HO-1 proteins, and inhibit the occurrence of Nrf2 Nuclear displacement. The lycopene nanocarrier inhibits the proliferation of HepG2, HCCLM3 human liver cancer cells, induces apoptosis, regulates the oxidative stress response in the cell, and regulates the Nrf2/AREE antioxidant signaling pathway, thereby promoting tumor cell apoptosis.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gabriela Carrasco-Torres ◽  
Rafael Baltiérrez-Hoyos ◽  
Erik Andrade-Jorge ◽  
Saúl Villa-Treviño ◽  
José Guadalupe Trujillo-Ferrara ◽  
...  

The inflammatory condition of malignant tumors continually exposes cancer cells to reactive oxygen species, an oxidizing condition that leads to the activation of the antioxidant defense system. A similar activation occurs with glutathione production. This oxidant condition enables tumor cells to maintain the energy required for growth, proliferation, and evasion of cell death. The objective of the present study was to determine the effect on hepatocellular carcinoma cells of a combination treatment with maleic anhydride derivatives (prooxidants) and quercetin (an antioxidant). The results show that the combination of a prooxidant/antioxidant had a cytotoxic effect on HuH7 and HepG2 liver cancer cells, but not on either of two normal human epithelial cell lines or on primary hepatocytes. The combination treatment triggered apoptosis in hepatocellular carcinoma cells by activating the intrinsic pathway and causing S phase arrest during cell cycle progression. There is also clear evidence of a modification in cytoskeletal actin and nucleus morphology at 24 and 48 h posttreatment. Thus, the current data suggest that the combination of two anticarcinogenic drugs, a prooxidant followed by an antioxidant, can be further explored for antitumor potential as a new treatment strategy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Li ◽  
Jing Zhou ◽  
Yajie Zhang ◽  
Jing Zhang ◽  
Xue Li ◽  
...  

Abstract Background Echinacoside (ECH) is the main active ingredient of Cistanches Herba, which is known to have therapeutic effects on metastatic tumors. However, the effects of ECH on liver cancer are still unclear. This study was to investigate the effects of ECH on the aggression of liver cancer cells. Methods Two types of liver cancer cells Huh7 and HepG2 were treated with different doses of ECH at different times and gradients. MTT and colony formation assays were used to determine the effects of ECH on the viability of Huh7 and HepG2 cells. Transwell assays and flow cytometry assays were used to detect the effects of ECH treatment on the invasion, migration, apoptosis and cell cycle of Huh7 and HepG2 cells. Western blot analysis was used to detect the effects of ECH on the expression levels of TGF-β1, smad3, smad7, apoptosis-related proteins (Caspase-3, Caspase-8), and Cyto C in liver cancer cells. The relationship between miR-503-3p and TGF-β1 was detected using bioinformatics analysis and Luciferase reporter assay. Results The results showed that ECH inhibited the proliferation, invasion and migration of Huh7 and HepG2 cells in a dose- and time-dependent manner. Moreover, we found that ECH caused Huh7 and HepG2 cell apoptosis by blocking cells in S phase. Furthermore, the expression of miR-503-3p was found to be reduced in liver tumor tissues, but ECH treatment increased the expression of miR-503-3p in Huh7 and HepG2 cells. In addition, we found that TGF-β1 was identified as a potential target of miR-503-3p. ECH promoted the activation of the TGF-β1/Smad signaling pathway and increased the expression levels of Bax/Bcl-2. Moreover, ECH could trigger the release of mitochondrial Cyto C, and cause the reaction Caspases grade. Conclusions This study demonstrates that ECH exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer, and provides a safe and effective anti-tumor agent for liver cancer.


2014 ◽  
Vol 37 (1) ◽  
pp. 10 ◽  
Author(s):  
Yong Liu ◽  
Hai Huang ◽  
Bo Yuan ◽  
Tianping Luo ◽  
Jianchao Li ◽  
...  

Purpose: The multifunctional RNA-binding protein, CUGBP1, regulates splicing, stability and translation of mRNAs. Previous studies have shown that CUGBP1 is expressed at high levels in the liver, although its role in hepatocellular carcinoma is unknown. Our aim was to determine if CUGBP1 could regulate hepatocellular carcinoma growth. Methods: Expression levels of CUGBP1 were analyzed in 70 hepatic carcinoma and 20 normal hepatic tissue samples by immunohistochemistry (IHC). Using lentivirus-mediated short hairpin RNA (shRNA), CUGBP1 expression in human hepatocellular carcinoma HepG2 cells was knocked-down. The effect of CUGBP1 on hepatic cancer cell growth was investigated. Results: CUGBP1 was expressed in 85.7% hepatocellular carcinoma specimens compared with 50% in normal liver specimens. CUGBP1 silencing remarkably decreased the proliferation of HepG2 cells, as determined by MTT assay. Flow cytometry analysis showed that knock-down of CUGBP1 led to G0/G1 phase cell cycle arrest, accompanied by sub-G1 accumulation. Moreover, depletion of CUGBP1 resulted in downregulation of cyclin B1 and upregulation of cyclin D1. Conclusion: These results suggest that CUGBP1 is essential for the growth of hepatocellular carcinoma cells. Knockdown of CUGBP1 might be a potential therapeutic approach for human hepatocellular carcinoma.


Sign in / Sign up

Export Citation Format

Share Document