Preparation and Performance Evaluation of Cold Mix Asphalt Mixture

2020 ◽  
Vol 20 (8) ◽  
pp. 4824-4831
Author(s):  
Zhilin Sun ◽  
Yawen Li ◽  
Junhui Zhang ◽  
Sanchun He

Cold mix asphalt mixture has a low strength and poor water stability, hence to solve this challenge, a cold mix asphaltic liquid was prepared in this study based on microscopic properties. LB-10 gradation was adopted and basalt fiber was selected as a reinforcing agent. The optimum asphaltaggregate ratio was determined by the Marshall test, and mix proportion was also designed. The laboratory tests were used to systematically evaluate road performance of the cold mix asphalt mixture. From the test results, it was shown that the initial strength, molding strength, immersion Marshall strength, residual stability, freeze-thaw splitting ratio, residual rate and dynamic stability of self-made cold mix asphalt mixture were 2.42 kN, 4.87 kN, 6.79 kN, 92.8%, 82.05%, 99.5% and 632 times/mm respectively. The initial strength, molding strength and residual stability of mixture became 90.9%, 88.7%, and 96.2%, respectively of their former values after one-month storage, showing good workability. By analyzing its research data and comparing with its existing products, the developed cold mix asphalt mixture can not only meet the requirements for road performances of the cold mix asphalt mixture in terms of strength, workability and high temperature stability, but greatly improves the water stability, storage stability and cohesive performance of the mixture.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sun Min ◽  
Yufeng Bi ◽  
Mulian Zheng ◽  
Sai Chen ◽  
Jingjing Li

The energy consumption and greenhouse gas emission of asphalt pavement have become a very serious global problem. The high-temperature stability and durability of polyurethane (PU) are very good. It is studied as an alternative binder for asphalt recently. However, the strength-forming mechanism and the mixture structure of the PU mixture are different from the asphalt mixture. This work explored the design and performance evaluation of the PU mixture. The PU content of mixtures was determined by the creep slope (K), tensile strength ratios (TSR), immersion Cantabro loss (ICL), and the volume of air voids (VV) to ensure better water stability. The high- and low-temperature stability, water stability, dynamic mechanical property, and sustainability of the PU mixture were evaluated and compared with those of the stone matrix asphalt mixture (SMA). The test results showed that the dynamic stability and bending strain of the PU mixture were about 7.5 and 2.3 times of SMA. The adhesion level of PU and the basalt aggregate was one level greater than the limestone, and basalt aggregates were proposed to use in the PU mixture to improve water stability. Although the initial TSR and ICL of PU mixture were lower, the long-term values were higher; the PUM had better long-term water damage resistance. The dynamic modulus and phase angles (φ) of the PU mixture were much higher. The energy consumption and CO2 emission of the PU mixture were lower than those of SMA. Therefore, the cold-mixed PU mixture is a sustainable material with excellent performance and can be used as a substitute for asphalt mixture.


2014 ◽  
Vol 522-524 ◽  
pp. 830-833 ◽  
Author(s):  
Hui Lin ◽  
Yuan Zhuang ◽  
Guang Wei Hu

In this paper, the influence of RAP content on pavement performance of hot plant recycling asphalt mixture is experimentally studied. The pavement performances contain high temperature stability, low temperature stability, water stability and fatigue resistance. Recovered asphalt was firstly extracted from RAP, and the properties of recovered asphalt was then tested and compared to normal 70# pavement asphalt. The gradation of recovered aggregate and new aggregate was then tested, and the mine material mixture gradation was determined. Marshall Test was adopted to determine the optimal asphalt content. The pavement performances show that the dynamic stability increases with RAP content increasing. The blending strain and fatigue life decreases while the stiffness modulus increases with the RAP content increasing. However, the residual stability and TSR show no obviously change with RAP content increasing.


2011 ◽  
Vol 266 ◽  
pp. 175-179 ◽  
Author(s):  
Yuan Xun Zheng ◽  
Ying Chun Cai ◽  
Ya Min Zhang

In order to discuss the effect of the basalt fiber on reinforcing pavement performance of asphalt mixtures, the optimum dosage of asphalt and fibers were studied by the method of Marshall test and rut test firstly. Then pavement performances of basalt fiber-modified asphalt mixtures were investigated through tests of high temperature stability, water stability and low temperature crack resistance, and compared with that of polyester fiber, xylogen fiber and control mixture. The testing results showed that the pavement performance of fiber-modified asphalt mixture are improved and optimized comparing with control asphalt mixture, and the performance of basalt fiber-modified asphalt mixture with best composition were excelled than those of polyester fiber and xylogen fiber.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1556 ◽  
Author(s):  
Fucheng Guo ◽  
Rui Li ◽  
Shuhua Lu ◽  
Yanqiu Bi ◽  
Haiqi He

Fiber-reinforced asphalt mixture has been widely used in pavement engineering to not only prevent asphalt binder leakage but also improve engineering properties of asphalt mixture. However, the research on three key parameters, namely fiber type, fiber length, and fiber content, which significantly affect the performance of fiber-reinforced asphalt mixture, have seldom been conducted systematically. To determine these three key parameters in the support of the application of fibers in mixture scientifically, three commonly used fibers were selected, basalt fiber, polyester fiber, and lignin fiber, and the testing on fibers, fiber-reinforced asphalt binders, and fiber-reinforced asphalt mixtures was conducted afterwards. The results showed: the favorable fiber type was basalt fiber; the favorable basalt fiber length was 6mm; the engineering properties including high temperature stability, low temperature crack resistance, and water susceptibility were clearly improved by the added basalt fiber, and the optimum basalt fiber content was 0.4 wt.%. The obtained results may be valuable from a practical point of view to engineers and practitioners.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2012 ◽  
Vol 238 ◽  
pp. 22-25 ◽  
Author(s):  
Yuan Zhao Chen ◽  
Zhen Xia Li

In order to discuss the effectiveness of basalt fiber in reinforcing pavement performance of asphalt mixtures, the pavement performances of basalt fiber asphalt mixtures were investigated by tests of high temperature stability, water stability and low temperature crack resistance, and compared with the pavement performance of asphalt mixtures with polyester fiber and xylogen fiber, and that of reference mixture. The results show that pavement performance of fiber asphalt mixture are improved and optimized comparing with reference asphalt mixture, the performance of asphalt mixture with basalt fiber are excelled than those with polyester fiber and xylogen fiber while the dosage of fibers is keeping at the optimum.


2012 ◽  
Vol 178-181 ◽  
pp. 1338-1343
Author(s):  
Wei Jiang ◽  
Jing Jing Xiao

According to the porous asphalt concrete’s big void structure as well as high temperature and rainy application environment, the author point out that using the conventional evaluation index such as high temperature stability and water stability to evaluate the PAC’s performance seem single, and then put up with estimating the PAC’s pavement performance by means of Hamburg Wheel Tracking under the water-high temperature’s comprehensive action. Studied on the PAC with the same raw materials and different gradations, and compared with the experimental results of AC-13 modified asphalt mixture and SMA-13, the results shows that, Hamburg Wheel Tracking test not only considered the water-high temperature’s comprehensive action on mixture, but also considered the mixture’s performance decay under long-term loading. Hamburg Wheel Tracking test can evaluate the PAC’s performance more practically, the PAC which materials and graduations reasonably designed have good performance, and its Hamburg Wheel Tracking final deformation is only 3.89mm, it can satisfy the demand from the high temperature and rainy environment. As well, the test results also comes to the conclusions that under the same materials and the same air voids, the PAC with coarse framework structure own better water stability and water-high temperature stability.


2013 ◽  
Vol 368-370 ◽  
pp. 764-770
Author(s):  
Xing Long Zhu ◽  
Dean Jiang

Pure crumb rubber asphalt mixture using dry process has certain requirement of mineral gradation with the potential disadvantage of uneven mixing under the traditional temperature. In this paper the gradation design of asphalt mixture Sup-13 mixed with TOR and crumb rubber using dry process was studied with the Superpave design method, pavement performance of asphalt mixture including high temperature stability, cracking resistance at low temperature and water stability was tested in the experiment. Results show that Superpave design method is suitable for the research on the asphalt mixture of TOR and rubber, with getting moving stability 3682 times/mm, failure strain 2573.8με, residual stability 84.8% and the ratio of freeze-thaw splitting 80.1%. The performance is so good to meet the requirements for asphalt pavement performance.


2014 ◽  
Vol 900 ◽  
pp. 459-462 ◽  
Author(s):  
Zhi Gang Xin

This paper analyzes the pavement performance of colored asphalt mixture of its high-temperature stability, water, stability low-temperature cracking resistance, and color characteristics, etc.; evaluates the technical capability, economic and social benefits, discusses the constriction technology and points for consideration for its ratio design, mixing, spreading and rolling of colored asphalt mixture pavement, which play an active role on application, extension and development of this technology.


Sign in / Sign up

Export Citation Format

Share Document