Study on Multifunctional Composite Nanomaterials for Controlled Drug Release in Biomedicine

2021 ◽  
Vol 21 (2) ◽  
pp. 1230-1235
Author(s):  
Jia-Yan Shen ◽  
Ting Dong ◽  
Liang Fang ◽  
Jian-Jun Ma ◽  
Li-Hong Zeng

Nanoscience is a highly comprehensive, interdisciplinary discipline based on many advanced science and technology, and has developed very rapidly in the past few decades. Nanoscience and technology has been widely used in many fields such as biomedicine, materials science, chemistry, physics, and electronic information engineering. Nanomaterials are widely used due to their many excellent properties such as quantum size effects, small size effects, surface effects, and tunneling effects, and have become hot research areas. It is very suitable as a carrier for antitumor drug molecules, which is conducive to improving drug efficacy and reducing drugs side effects. After selective functionalization, it is highly possible to achieve the loading and release of multiple drug molecules. Based on the magnetic mesoporous Fe3O4-MSNs composite nanoparticles, we have modified a series of organosilane coupling agents on its surface. The most commonly used antitumor drug (adriamycin) in clinical was selected as a model to evaluate the loading and release behavior of modified composite nanoparticles Fe3O4-MSNs on this drug. The results indicate that Fe3O4 is selectively modified after appropriate modification of the silane coupling agent. MSNs carrier can effectively regulate the adsorption and release rate of hydrophilic DOX and hydrophobic PTX, and shows a good drug control ability.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3605
Author(s):  
Haiyan Hu ◽  
Aiping Liu ◽  
Yuehua Wan ◽  
Yuan Jing

Energy storage ceramics is among the most discussed topics in the field of energy research. A bibliometric analysis was carried out to evaluate energy storage ceramic publications between 2000 and 2020, based on the Web of Science (WOS) databases. This paper presents a detailed overview of energy storage ceramics research from aspects of document types, paper citations, h-indices, publish time, publications, institutions, countries/regions, research areas, highly cited papers, and keywords. A total of 3177 publications were identified after retrieval in WOS. The results show that China takes the leading position in this research field, followed by the USA and India. Xi An Jiao Tong Univ has the most publications, with the highest h-index. J.W. Zhai is the most productive author in energy storage ceramics research. Ceramics International, Journal of Materials Science-Materials in Electronics, and the Journal of Alloys and Compounds are the most productive journals in this field, and materials science—multidisciplinary is the most frequently used subject category. Keywords, highly cited papers, and the analysis of popular papers indicate that, in recent years, lead-free ceramics are prevalent, and researchers focus on fields such as the microstructure, thin films, and phase transition of ceramics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1824
Author(s):  
Yu-Jyuan Wang ◽  
Pei-Ying Lin ◽  
Shu-Ling Hsieh ◽  
Rajendranath Kirankumar ◽  
Hsin-Yi Lin ◽  
...  

The purpose of this study was to use agar as a multifunctional encapsulating material to allow drug and ferromagnetism to be jointly delivered in one nanoparticle. We successfully encapsulated both Fe3O4 and doxorubicin (DOX) with agar as the drug carrier to obtain DOX-Fe3O4@agar. The iron oxide nanoparticles encapsulated in the carrier maintained good saturation of magnetization (41.9 emu/g) and had superparamagnetism. The heating capacity test showed that the specific absorption rate (SAR) value was 18.9 ± 0.5 W/g, indicating that the ferromagnetic nanoparticles encapsulated in the gel still maintained good heating capacity. Moreover, the magnetocaloric temperature could reach 43 °C in a short period of five minutes. In addition, DOX-Fe3O4@agar reached a maximum release rate of 85% ± 3% in 56 min under a neutral pH 7.0 to simulate the intestinal environment. We found using fluorescent microscopy that DOX entered HT-29 human colon cancer cells and reduced cell viability by 66%. When hyperthermia was induced with an auxiliary external magnetic field, cancer cells could be further killed, with a viability of only 15.4%. These results show that agar is an efficient multiple-drug carrier, and allows controlled drug release. Thus, this synergic treatment has potential application value for biopharmaceutical carrier materials.


Author(s):  
Anna Tsantili-Kakoulidou

ADME properties and toxicity predictions play an essential role in prioritization and optimization of drug molecules. According to recent statistics, drug efficacy and safety are principal reasons for drug failure. In this perspective, the position of ADME predictions in the evolution of traditional QSAR from the single objective of biological activity to a multi-task concept is discussed. The essential features of ADME and toxicity QSAR models are highlighted. Since such models are applied to prioritize existing or virtual project compounds with already established or predicted target affinity, a mechanistic interpretation, although desirable, is not a primary goal. However, a broad applicability domain is crucial. A future challenge with multi-objective QSAR is to adapt to the realm of big data by integrating techniques for the exploitation of the continuously increasing number of ADME data and the huge amount of clinical development endpoints for the sake of efficacy and safety of new drug candidates.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1875
Author(s):  
Seung Rim Hwang ◽  
Kushal Chakraborty ◽  
Jeong Man An ◽  
Jagannath Mondal ◽  
Hong Yeol Yoon ◽  
...  

Drug delivery to tumor sites using nanotechnology has been demonstrated to overcome the drawbacks of conventional anticancer drugs. Altering the surface shape and geometry of nanocomposites alters their chemical properties, which can confer multiple attributes to nanocarriers for the treatment of cancer and their use as imaging agents for cancer diagnosis. However, heterogeneity and blood flow in human cancer limit the distribution of nanoparticles at the site of tumor tisues. For targeted delivery and controlled release of drug molecules in harsh tumor microenvironments, smart nanocarriers combined with various stimuli-responsive materials have been developed. In this review, we describe nanomaterials for smart anticancer therapy as well as their pharmaceutical aspects including pharmaceutical process, formulation, controlled drug release, drug targetability, and pharmacokinetic or pharmacodynamic profiles of smart nanocarriers. Inorganic or organic-inorganic hybrid nanoplatforms and the electrospinning process have also been briefly described here.


2021 ◽  
Author(s):  
Agata Blasiak ◽  
Anh TL Truong ◽  
Alexandria Remus ◽  
Lissa Hooi ◽  
Shirley Gek Kheng Seah ◽  
...  

Objectives: We aimed to harness IDentif.AI 2.0, a clinically actionable AI platform to rapidly pinpoint and prioritize optimal combination therapy regimens against COVID-19. Methods: A pool of starting candidate therapies was developed in collaboration with a community of infectious disease clinicians and included EIDD-1931 (metabolite of EIDD-2801), baricitinib, ebselen, selinexor, masitinib, nafamostat mesylate, telaprevir (VX-950), SN-38 (metabolite of irinotecan), imatinib mesylate, remdesivir, lopinavir, and ritonavir. Following the initial drug pool assessment, a focused, 6-drug pool was interrogated at 3 dosing levels per drug representing nearly 10,000 possible combination regimens. IDentif.AI 2.0 paired prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus (propagated, original strain and B.1.351 variant) and Vero E6 assay with a quadratic optimization workflow. Results: Within 3 weeks, IDentif.AI 2.0 realized a list of combination regimens, ranked by efficacy, for clinical go/no-go regimen recommendations. IDentif.AI 2.0 revealed EIDD-1931 to be a strong candidate upon which multiple drug combinations can be derived. Conclusions: IDentif.AI 2.0 rapidly revealed promising drug combinations for a clinical translation. It pinpointed dose-dependent drug synergy behavior to play a role in trial design and realizing positive treatment outcomes. IDentif.AI 2.0 represents an actionable path towards rapidly optimizing combination therapy following pandemic emergence.


2020 ◽  
Author(s):  
Liya Thurakkal ◽  
Satyam Singh ◽  
Sushabhan Sadhukhan ◽  
Mintu Porel

The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease, papain-like protease, spike protein, helicase and RNA dependent RNA polymerase. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute <i>in-vitro</i> and <i>in-vivo</i> analysis on SARS-CoV-2 in the future.<br>


1988 ◽  
Vol 140 ◽  
Author(s):  
John Ferrante ◽  
Stephen V. Pepper

AbstractTribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. In this paper we will attempt to define some of these problems and indicate some profitable directions for future research. We make three broad classifications: (1) fluid properties--compression, rheology, additives and particulates; (2) material properties of the solids--deformation, defect formation and energy loss mechanisms; and (3) interfacial properties--adhesion, friction chemical reactions, and boundary films. Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: that is, the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena. This experimental and theoretical activity is reviewed and related to the traditional research areas.


2019 ◽  
Vol 24 (45) ◽  
pp. 5471-5486 ◽  
Author(s):  
Yasamin A. Jodat ◽  
Min G. Kang ◽  
Kiavash Kiaee ◽  
Gyeong J. Kim ◽  
Angel F.H. Martinez ◽  
...  

To reduce the required capital and time investment in the development of new pharmaceutical agents, there is an urgent need for preclinical drug testing models that are predictive of drug response in human tissues or organs. Despite tremendous advancements and rigorous multistage screening of drug candidates involving computational models, traditional cell culture platforms, animal models and most recently humanized animals, there is still a large deficit in our ability to predict drug response in patient groups and overall attrition rates from phase 1 through phase 4 of clinical studies remain well above 90%. Organ-on-a-chip (OOC) platforms have proven potential in providing tremendous flexibility and robustness in drug screening and development by employing engineering techniques and materials. More importantly, in recent years, there is a clear upward trend in studies that utilize human-induced pluripotent stem cell (hiPSC) to develop personalized tissue or organ models. Additionally, integrated multiple organs on the single chip with increasingly more sophisticated representation of absorption, distribution, metabolism, excretion and toxicity (ADMET) process are being utilized to better understand drug interaction mechanisms in the human body and thus showing great potential to better predict drug efficacy and safety. In this review, we summarize these advances, highlighting studies that took the next step to clinical trials and research areas with the utmost potential and discuss the role of the OOCs in the overall drug discovery process at a preclinical and clinical stage, as well as outline remaining challenges.


Sign in / Sign up

Export Citation Format

Share Document