Plasmon-Enhanced Ultraviolet Photoluminescence from the Graphene/GaN Nanofilm

2021 ◽  
Vol 21 (10) ◽  
pp. 5229-5234
Author(s):  
Jitao Li ◽  
Qiuxiang Zhu ◽  
Jinyang Ding ◽  
Guixia Zhang ◽  
Jiajia Han ◽  
...  

The response of graphene surface plasmon (SP) in ultraviolet (UV) wavelength region and its functional applications on the short wavelength of graphene/semiconductorare both fascinating research areas. Herein, a hybrid structure of graphene/GaN nanofilm was designed and fabricated to investigate the photoluminescence (PL) performance and the coupling dynamics. It is demonstrated that the resonant coupling between graphene SPs and GaN exciton emission is responsible for the substantially enhanced PL from the structure of graphene/GaN nanofilm. The underlying mechanism of the improved PL performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures.

Author(s):  
B. Elavarasan ◽  
G. Muhiuddin ◽  
K. Porselvi ◽  
Y. B. Jun

AbstractHuman endeavours span a wide spectrum of activities which includes solving fascinating problems in the realms of engineering, arts, sciences, medical sciences, social sciences, economics and environment. To solve these problems, classical mathematics methods are insufficient. The real-world problems involve many uncertainties making them difficult to solve by classical means. The researchers world over have established new mathematical theories such as fuzzy set theory and rough set theory in order to model the uncertainties that appear in various fields mentioned above. In the recent days, soft set theory has been developed which offers a novel way of solving real world issues as the issue of setting the membership function does not arise. This comes handy in solving numerous problems and many advancements are being made now-a-days. Jun introduced hybrid structure utilizing the ideas of a fuzzy set and a soft set. It is to be noted that hybrid structures are a speculation of soft set and fuzzy set. In the present work, the notion of hybrid ideals of a near-ring is introduced. Significant work has been carried out to investigate a portion of their significant properties. These notions are characterized and their relations are established furthermore. For a hybrid left (resp., right) ideal, different left (resp., right) ideal structures of near-rings are constructed. Efforts have been undertaken to display the relations between the hybrid product and hybrid intersection. Finally, results based on homomorphic hybrid preimage of a hybrid left (resp., right) ideals are proved.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3289
Author(s):  
Tomasz Kwapiński ◽  
Marcin Kurzyna

Mid-gap 1D topological states and their electronic properties on different 2D hybrid structures are investigated using the tight binding Hamiltonian and the Green’s function technique. There are considered straight armchair-edge and zig-zag Su–Schrieffer–Heeger (SSH) chains coupled with real 2D electrodes which density of states (DOS) are characterized by the van Hove singularities. In this work, it is shown that such 2D substrates substantially influence topological states end evoke strong asymmetry in their on-site energetic structures, as well as essential modifications of the spectral density function (local DOS) along the chain. In the presence of the surface singularities the SSH topological state is split, or it is strongly localized and becomes dispersionless (tends to the atomic limit). Additionally, in the vicinity of the surface DOS edges this state is asymmetrical and consists of a wide bulk part together with a sharp localized peak in its local DOS structure. Different zig-zag and armachair-edge configurations of the chain show the spatial asymmetry in the chain local DOS; thus, topological edge states at both chain ends can appear for different energies. These new effects cannot be observed for ideal wide band limit electrodes but they concern 1D topological states coupled with real 2D hybrid structures.


2014 ◽  
Vol 609-610 ◽  
pp. 779-783
Author(s):  
Ya Shu Zang ◽  
Jun Yin ◽  
Jing Li ◽  
Jun Yong Kang

In this work, a facile method was presented to produce Ag nanoball (NB)/ZnO hollow nanosphere (HNS) hybrid structure. Large scale, two-dimensional (2D) ZnO HNS arrays were fabricated on sapphire substrates using the polystyrene (PS) nanospheres as the template. Ag film were deposited on ZnO HNS arrays by radio frequency (RF) magnetron sputtering and then aggregated into Ag NBs on the top of ZnO HNS by the laser irradiation treatment. The size and distribution of Ag NB arrays were controlled by employing different ZnO HNS supporting structure templates. The scanning electron microscopy (SEM) was applied to visually study the evolution process of Ag NB/ZnO NHS arrays. X-ray diffraction (XRD) was carried out to characterize crystal structures of the samples. Obvious surface enhanced Raman (SERS) signals were observed from the Ag NB/ZnO NHS nanocomposite structure compared with that in the ZnO HNS structure by using the R6G as the testing agent. Theoretical simulation results demonstrate that the Raman enhancement originates from the significant enhanced local electromagnetic field induced by the surface plasmon resonance (SPR) of Ag NBs.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
G. Muhiuddin ◽  
D. Al-Kadi ◽  
A. Mahboob

In this paper, the notion of hybrid structure is applied to the ideal theory in BCI-algebras. In fact, we introduce the notions of hybrid p -ideal, hybrid h-ideal, and hybrid a-ideal in BCI-algebras and investigate their related properties. Furthermore, we show that every hybrid p -ideal (or h-ideal or a-ideal) is a hybrid ideal in a BCI-algebra but converse need not be true in general and in support, and we exhibit counter examples for each case. Moreover, we consider characterizations of hybrid p -ideal, hybrid h-ideal, and hybrid a-ideal in BCI-algebras.


2012 ◽  
Vol 166-169 ◽  
pp. 14-18
Author(s):  
Shu Yun Zhang ◽  
Wen Wei Zhao ◽  
Hai Hua Wang

Considering core thickness is important issue to performance of exterior frame and core hybrid structure in high-rise buildings, seismic response analysis is conducted by response spectrum method for finite element models with different core thickness. The optimization design of core thickness of hybrid Structures on the basis of the seismic response is studied, the core thicknesses are chosen as design variables, the objective function about core volume is adopted, some specification requirements such as deformation, the ratio of lateral stiffness to gravity, storey shear to gravity, storey shear of exterior frame, axial compression ratio of column and wall limb, bearing capacity of structural member and core construction are regarded as restricting conditions, the optimal mathematical model is established for reflecting integrity dynamic properties of hybrid structure. The ANSYS software is used for optimizing tool, the hybrid structures optimization design are made through different initial values for verifying convergence of optimization method, the optimal result show that the performances of hybrid structure are improved, the internal forces are reduced and the ratios of inner force born by exterior frames are increased in the optimal scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Guru P. Neupane ◽  
Minh Dao Tran ◽  
Hyun Kim ◽  
Jeongyong Kim

Monolayer MoS2 (1L-MoS2) is an ideal platform to examine and manipulate two dimensionally confined exciton complexes, which provides a large variety of modulating the optical and electrical properties of 1L-MoS2. Extensive studies of external doping and hybridization exhibit the possibilities of engineering the optical and electrical performance of 1L-MoS2. However, biomodifications of 1L-MoS2 and the characterization and applications of such hybrid structures are rarely reported. In this paper, we present a bio-MoS2 hybrid structure fabricated by laterally stretching strands of DNAs on CVD-grown 1L-MoS2. We observed a strong modification of photoluminescence and Raman spectra with reduced PL intensity and red-shift of PL peak and Raman peaks, which were attributed to electron doping by the DNAs and the presence of tensile strain in 1L-MoS2. Moreover, we observed a significant enhancement of electric mobility in the DNA/1L-MoS2 hybrid compared to that in the pristine 1L-MoS2, which may have been caused by the induced strain in 1L-MoS2.


2002 ◽  
Vol 12 (04) ◽  
pp. 1159-1171
Author(s):  
RAPHAEL TSU

Since the introduction of the man-made superlattices and quantum well structures, the field has taken off and developed into Quantum Slab, QS; Quantum Wire, QW; Quantum Dot, QD; and Nanoelectronics. This rapidly expanding field owes its success to the development of epitaxially grown heterojunctions and heterostructures to confine carriers in injection lasers. Meanwhile, the advancement of lithography allows potentials to be applied in nanoscale dimension leading to the possibility of quantum confinement without heterostructures. Actually, quantum states in the inversion layer of field effect transistors, FETs, formed by the application of a large gate voltage appeared several years before the introduction of the superlattices and quantum wells. The quantum Hall effect was first discovered in the Si inversion layer. This chapter, Multipole-Electrode Heterojunction Hybrid Structure, MEHHS, discusses hybrid structures of heterojunctions and applied potentials via multipole-electrodes for a much wider variety of structures for future quantum devices. The technology required to fabricate these electrodes, to some degree, is routinely used in the double-gate devices. Few specific examples are detailed here, hopefully, to stimulate a rapid adoption of a hybrid system for the formation of quasi-discrete states for quantum devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (34) ◽  
pp. 26985-26990 ◽  
Author(s):  
Ruili Wu ◽  
Weilong Li ◽  
Yun Wan ◽  
Zhaoyu Ren ◽  
Xinlong Xu ◽  
...  

Anisotropic terahertz response of stretch-aligned composite films based on carbon nanotube–SiC hybrid structure was investigated.


2010 ◽  
Vol 04 (01) ◽  
pp. 1-7 ◽  
Author(s):  
G. Q. LI ◽  
X. DING ◽  
S. W. CHEN

The inter-storey drift limitation is an important index for the structural design of tall buildings. The inter-storey drift limitation of steel-hybrid structures for tall buildings is studied in this paper. It is found that it is more reasonable to divide the inter-storey drift of steel–concrete hybrid structures into harmless part and harmful part. It is meaningful to limit the harmful drift for preventing the crack of concrete walls in hybrid structures. A formula to calculate the allowable harmful inter-storey drift with no cracks of concrete walls is deduced for hybrid structures for tall buildings. The effectiveness of the formula is verified through the FEM analysis of a typical tall building hybrid structure.


2021 ◽  
pp. 1-11
Author(s):  
G. Muhiuddin ◽  
J. Catherine Grace John ◽  
B. Elavarasan ◽  
Y.B. Jun ◽  
K. Porselvi

The concept of a hybrid structure in X -semimodules, where X is a semiring, is introduced in this paper. The notions of hybrid subsemimodule and hybrid right (resp., left) ideals are defined and discussed in semirings. We investigate the representations of hybrid subsemimodules and hybrid ideals using hybrid products. We also get some interesting results on t-pure hybrid ideals in X . Furthermore, we show how hybrid products and hybrid intersections are linked. Finally, the characterization theorem is proved in terms of hybrid structures for fully idempotent semirings.


Sign in / Sign up

Export Citation Format

Share Document