scholarly journals Modulation of Optical and Electrical Characteristics by Laterally Stretching DNAs on CVD-Grown Monolayers of MoS2

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Guru P. Neupane ◽  
Minh Dao Tran ◽  
Hyun Kim ◽  
Jeongyong Kim

Monolayer MoS2 (1L-MoS2) is an ideal platform to examine and manipulate two dimensionally confined exciton complexes, which provides a large variety of modulating the optical and electrical properties of 1L-MoS2. Extensive studies of external doping and hybridization exhibit the possibilities of engineering the optical and electrical performance of 1L-MoS2. However, biomodifications of 1L-MoS2 and the characterization and applications of such hybrid structures are rarely reported. In this paper, we present a bio-MoS2 hybrid structure fabricated by laterally stretching strands of DNAs on CVD-grown 1L-MoS2. We observed a strong modification of photoluminescence and Raman spectra with reduced PL intensity and red-shift of PL peak and Raman peaks, which were attributed to electron doping by the DNAs and the presence of tensile strain in 1L-MoS2. Moreover, we observed a significant enhancement of electric mobility in the DNA/1L-MoS2 hybrid compared to that in the pristine 1L-MoS2, which may have been caused by the induced strain in 1L-MoS2.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.


2014 ◽  
Author(s):  
Yulia A. Gromova ◽  
Andrei V. Alaferdov ◽  
Victor A. Ermakov ◽  
Kirill V. Bogdanov ◽  
Irina V. Martynenko ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Sookyoung Moon

We developed a simple and effective technique for fabricating a hybrid nanostructure of graphene-silver nanoparticles. The structure was prepared by stacking method with polyvinylpyrrolidone as a stabilizer. The chemical linking of G-PVP-Ag is possible through PVP-based ligand chemistry. The resulting hybrid film exhibited 87% transparency. The electrical properties under UV light increased compared with only one material. The conversion efficiency of a solar cell fabricated with the hybrid structure also increased approximately by 1.5% compared with that of solar cell fabricated without the hybrid film.


Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated poly(3-hexylthiophene) (P3HT) thin film. In the previous studies, the P3HT-based photoactive thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to relatively more brittle thin film constituent—poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS) conductive thin film as a bottom electrode. To address this issue, it is aimed to design mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to optimize design of the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS thin film affect the optical and electrical properties. Also, pre-strain effect on light absorptivity of the corrugated P3HT-based thin films was studied. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and DC voltage strain sensing capability was validated. As a result, flexible strain sensor exhibited tensile strain sensing range up to 5% at frequency up to 15 Hz with maximum gage factor ~7.


2021 ◽  
Vol 22 (3) ◽  
pp. 501-508
Author(s):  
Huda Bukheet Hassan ◽  
Hayder M. Abduljalil ◽  
Ahmed Hashim

This paper aims to investigate the structural, optical and electrical properties of PEO doped with NiO. The DFT calculations have been performed using Gaussian 09 package of programs. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affinity, electronegativity, electrochemical hardness, electronic softness and electrophilic index. The obtained results showed that the doping PEO with NiO improved the structural, optical, electronic and electrical characteristics where the energy band gap decreases about 67.4% with addition of NiO which make the (PEO-NiO) composites are promising materials for flexible optoelectronics fields in the development of electronics applications.


2020 ◽  
Vol 58 (3) ◽  
pp. 190-194 ◽  
Author(s):  
Yu-Sung Kim ◽  
Jin-Young Choi ◽  
Yun-je park ◽  
Su-Hyeon Choe ◽  
Byung-Chul Cha ◽  
...  

Transparent conductive ZnO 50 nm/Ag 10 nm/SnO<sub>2</sub> 50 nm (ZAS) tri-layer films were deposited on glass substrates by magnetron sputtering, and then the surface was subjected to intense electron beam irradiation to investigate the effects of electron irradiation on the structural, optical, and electrical properties of the films. After deposition, the ZAS thin films were electron-irradiated for 10 minutes, with varying electron incident energies of 300, 600, and 900 eV. The films that were electron irradiated at 900 eV showed higher optical transmittance of 83.6% in the visible wavelength region, and lower resistivity, of 4.75 × 10<sup>-5</sup> Ωcm, than the other films. From the observed electrical properties and optical band gap, it was concluded that the optical band gap increased with the incident electron energy up to 600 eV. The optical band gap increased from 4.12 to 4.23 eV, with carrier density increasing from 7.09 to 8.55 × 10<sup>21</sup> cm<sup>−3</sup>. However, the film electron irradiated at 900 eV showed a decrease in optical band gap energy of 4.16 eV due to the decreased carrier density of 8.25 × 10<sup>21</sup> cm<sup>−3</sup>. The figure of merit revealed that the ZAS thin films electron-irradiated at 900 eV had higher optical and electrical performance than the other films prepared in this study.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Sign in / Sign up

Export Citation Format

Share Document