A Self-Powered Wearable Ultraviolet Radiation Detector Integrated with Wireless Devices Based on T-ZnO/PVDF Composite Fabric

2021 ◽  
Vol 16 (4) ◽  
pp. 515-521
Author(s):  
Wanglinhan Zhang ◽  
Xinyu Xue

Research on wearable devices has promoted the development of real-time ultraviolet intensity monitoring technology. This paper proposes a self-powered wearable ultraviolet radiation detector based on T-ZnO nanowires/PVDF composite fabric. The soft fabric base allows the device to attach to various muscles of the human body. Due to the piezoelectric and photoelectric properties, the devices can transform mechanical energy into electrical energy. The output closely relates to the ultraviolet intensity. Therefore, this kind of stable, flexible, and micro device can output piezoelectric voltage as both an energy source and a sensing signal on human bodies. Experiments have proved that the wearable ultraviolet detector has high sensing stability and can work on the skin. The self-powered feature allows it to integrate with wireless transmission equipment, which can upload the ultraviolet intensity data collected by the self-powered wearable ultraviolet radiation detector to the Big Data Cloud. This system will contribute to the formation of the Internet of Things.

Author(s):  
Chao Chen ◽  
Yu Shing Chan ◽  
Li Zou ◽  
Wei-Hsin Liao

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.


Nanoscale ◽  
2021 ◽  
Author(s):  
Manikandan Muthu ◽  
Pandey Rajagopalan ◽  
Shujia Xu ◽  
I. A. Palani ◽  
Vipul Singh ◽  
...  

Efficaciously scavenging waste mechanical energy from the environment is an emerging field in the self-powered and self-governing electronics system which solves battery limitations. it demonstrates enormous potential in various fields...


2012 ◽  
Vol 488-489 ◽  
pp. 1268-1273 ◽  
Author(s):  
Nishchal K. Verma ◽  
Pallavi Singla ◽  
Abhishek Roy

This paper proposes an effective and convenient mechanism to transform and utilize bio-mechanical energy to electrical energy by presenting a self-powered shoe-model in order to tap the energy obtained for charging mobile phone battery. While walking in general, negative work is done by every human being in every single step taken. This negative work can be converted into electrical energy using a dc machine. The resulting energy could serve as ancillary source of energy for charging the batteries. The proposed self-powered shoe-model contains a permanent magnet DC machine, rack and pinion section and a signal conditioning circuit for charging mobile phone battery. The designed shoe-model has been successfully tested on Li-ion battery of a mobile phone from a reputed brand.


2019 ◽  
Vol 85 (1) ◽  
pp. 10902 ◽  
Author(s):  
Smail Ahmim ◽  
Morgan Almanza ◽  
Alexandre Pasko ◽  
Frédéric Mazaleyrat ◽  
Martino LoBue

We numerically study the design of a thermomagnetic generator aimed to convert a heat flow into electrical energy. The device uses the variation of magnetization of a magnetocaloric material (MCM) along a cyclic transformation between the hot and the cold sources. The magnetic energy is transformed into mechanical energy via the magnetic forces and eventually into electrical energy through an electromechanical transducer. Firstly, we work-out the optimal size of the cantilever in order to achieve the self-oscillation of the MCM between the two heat sources. Eventually, using finite element calculations, we compare the efficiency of a piezoelectric transducer (PZT 5a) with that of a set of coils in order to convert the mechanical into electrical energy. The piezoelectrics and the coils recover 0.025% and 0.018% respectively of the available mechanical energy (116 mJ/cm3). The possible strategies to achieve a better performance are discussed in theconclusion.


2020 ◽  
Vol 11 ◽  
pp. 1394-1401
Author(s):  
Liangyi Zhang ◽  
Huan Li ◽  
Yiyuan Xie ◽  
Jing Guo ◽  
Zhiyuan Zhu

Recently, there has been growing interest in triboelectric nanogenerators (TENGs) that can effectively convert various forms of mechanical energy input into electrical energy. In the present study, a novel Teflon/vitamin B1 powder based triboelectric nanogenerator (TVB-TENG) is proposed. Paper is utilized as a supporting platform for triboelectrification between a commercial Teflon tape and vitamin B1 powder. The measured open-circuit voltage was approximately 340 V. The TVB-TENG can be applied as a humidity sensor and exhibits a linear and reversible response to the relative humidity of the environment. Moreover, the change in relative humidity is also indicated by the change in luminosity of a set of light-emitting diodes (LEDs) integrated in the TVB-TENG system. The TVB-TENG proposed in this study illustrates a cost-effective method for portable power supply and sensing devices.


Sensor Review ◽  
2020 ◽  
Vol 40 (6) ◽  
pp. 629-635
Author(s):  
Man Zhang ◽  
Liangping Xia ◽  
Suihu Dang ◽  
Lifang Shi ◽  
Axiu Cao ◽  
...  

Purpose The pressure sensors can convert external pressure or mechanical deformation into electrical power and signal, which cannot only detect pressure or strain changes but also harvest energy as a self-powered sensor. This study aims to develop a self-powered flexible pressure sensor based on regular nanopatterned polymer films. Design/methodology/approach In this paper, the self-powered flexible pressure sensor is mainly composed of two nanopatterned polymer films and one conductive electrode layer between them, which is a sandwich structure. The regular nanostructures increase the film roughness and contact area to enhance the friction effect. To enhance the performance of the pressure sensor, different nanostructures on soft polymer sensitive layers are fabricated using UV nanoimprint lithography to generate more triboelectric charges. Findings Finally, the self-powered flexible pressure sensor is prepared, which consists of sub-200 nm resolution regular nanostructures on the surface of the elastic layer and an indium tin oxide electrode thin film. By converting the friction mechanical energy into electrical power, a maximum power of 423.8 mW/m2 and the sensitivity of 0.8 V/kPa at a frequency of 5 Hz are obtained, which proves the excellent sensing performance of the sensor. Originality/value The acquired electrical power and pressure signal by the sensor would be processed in the signal process circuit, which is capable of immediately and sustainably driving the highly integrated self-powered sensor system. Results of the experiments show that this new pressure sensor is a potential method for personal pressure monitoring, featured as being wearable, cost-effective, non-invasive and user-friendly.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xiaoshuang Zhou ◽  
Xin Chen ◽  
Hao Zhu ◽  
Xu Dong ◽  
lvzhou Li ◽  
...  

Mechanical energy harvesters are widely studied because of their diverse applications, such as harvesting of ocean wave energy, self-powered wireless sensors, portable power supplies and so on. To be feasible,...


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1391
Author(s):  
Yeau-Ren Jeng ◽  
Andrew E. Mendy ◽  
Chi-Tse Ko ◽  
Shih-Feng Tseng ◽  
Chii-Rong Yang

A triboelectric generator (TEG) is a simple coupling combined with triboelectrification and electrostatic induction, which can convert mechanical energy into electrical energy and have the potential for self-powered device application. In this study, TEGs are fabricated consisting of a conductive textile (CT) layer (a fabric woven with polyester and stainless steel) and a polydimethylsiloxane (PDMS) layer. The CT friction layer is also used as a conductive electrode and designed with various surface morphologies, including unpatterned, dots, and lines with 1 and 2 cm spacings. Experimental results show that the TEG with an unpatterned CT layer produces an output voltage of 54.6 V and an output current of 5.46 µA. The patterned surfaces increase the effective contact area and friction effect between the CT and PDMS layers and hence enhance the output voltage and current to 94.4 V and 9.44 µA. Compared to the unpatterned CT layer, the pattern use of 1 cm spaced lines, 2 cm spaced lines, and dots improves the output voltage and current by 1.73, 1.68, and 1.24 times, respectively. Moreover, the TEG with 1 cm spaced lines generates a high output power density of 181.9 mW/m2.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7129
Author(s):  
Junpeng Wu ◽  
Yang Zheng ◽  
Xiaoyi Li

The emergence of the Internet of Things (IoT) has subverted people’s lives, causing the rapid development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer from the pollution problem and the limited lifetime for powering widely implemented electronics or sensors. Therefore, it is essential to obtain self-powered sensors integrated with renewable energy harvesters. The triboelectric nanogenerator (TENG), which can convert the surrounding mechanical energy into electrical energy based on the surface triboelectrification effect, was born of this background. This paper systematically introduces the working principle of the TENG-based self-powered sensor, including the triboelectrification effect, Maxwell’s displacement current, and quantitative analysis method. Meanwhile, this paper also reviews the recent application of TENG in different fields and summarizes the future development and current problems of TENG. We believe that there will be a rise of TENG-based self-powered sensors in the future.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6166
Author(s):  
Lingbo Li ◽  
Guoliang Hu ◽  
Lifan Yu ◽  
Haonan Qi

Magnetorheological (MR) dampers, used as intelligent semi-active vibration control devices to achieve low energy consumption, fast response, controllability, and other capabilities are generally installed with a variety of sensors on their exterior to ensure that the damping force can be accurately controlled. However, external sensors are often affected by external complications that reduce the reliability of the damper, and the cost of powering the damper coils in remote locations where power is not available can be significantly increased. Based on these problems, a new self-powered MR damper scheme is proposed. The proposed MR damper has both energy-harvesting capabilities and damping controllability, and greatly improves the stability and application range of the device by converting vibration energy into electrical energy to supply the excitation coil. The MR damper can drive the piston rod in a linear reciprocating motion by external excitation, which converts mechanical energy into electrical energy via a DC brushless three-phase generator after conversion by a double-linkage mechanism. At the same time, the electrical energy generated by the generator is passed into the excitation coil to change the output damping force of the damper. Meanwhile, the damping performance and energy-harvesting efficiency of the new self-powered MR damper is experimentally tested. Experimental results show the damping force of the device reaches 1040 N when the applied current is 0.6 A. The proposed self-powered MR damper has an instantaneous voltage amplitude of 1.782 V and a peak phase power of 4.428 W when the input excitation amplitude is 12.5 mm and the frequency is 3 Hz.


Sign in / Sign up

Export Citation Format

Share Document