scholarly journals Development of Flexible Triboelectric Generators Based on Patterned Conductive Textile and PDMS Layers

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1391
Author(s):  
Yeau-Ren Jeng ◽  
Andrew E. Mendy ◽  
Chi-Tse Ko ◽  
Shih-Feng Tseng ◽  
Chii-Rong Yang

A triboelectric generator (TEG) is a simple coupling combined with triboelectrification and electrostatic induction, which can convert mechanical energy into electrical energy and have the potential for self-powered device application. In this study, TEGs are fabricated consisting of a conductive textile (CT) layer (a fabric woven with polyester and stainless steel) and a polydimethylsiloxane (PDMS) layer. The CT friction layer is also used as a conductive electrode and designed with various surface morphologies, including unpatterned, dots, and lines with 1 and 2 cm spacings. Experimental results show that the TEG with an unpatterned CT layer produces an output voltage of 54.6 V and an output current of 5.46 µA. The patterned surfaces increase the effective contact area and friction effect between the CT and PDMS layers and hence enhance the output voltage and current to 94.4 V and 9.44 µA. Compared to the unpatterned CT layer, the pattern use of 1 cm spaced lines, 2 cm spaced lines, and dots improves the output voltage and current by 1.73, 1.68, and 1.24 times, respectively. Moreover, the TEG with 1 cm spaced lines generates a high output power density of 181.9 mW/m2.


2021 ◽  
Vol 34 (2) ◽  
pp. 157-172
Author(s):  
Deepak Anand ◽  
Singh Sambyal ◽  
Rakesh Vaid

The demand for energy is increasing tremendously with modernization of the technology and requires new sources of renewable energy. The triboelectric nanogenerators (TENG) are capable of harvesting ambient energy and converting it into electricity with the process of triboelectrification and electrostatic-induction. TENG can convert mechanical energy available in the form of vibrations, rotation, wind and human motions etc., into electrical energy there by developing a great scope for scavenging large scale energy. In this review paper, we have discussed various modes of operation of TENG along with the various factors contributing towards its efficiency and applications in wearable electronics.



2014 ◽  
Vol 663 ◽  
pp. 299-303 ◽  
Author(s):  
Ubaidillah ◽  
Suyitno ◽  
Imam Ali ◽  
Eko Prasetya Budiana ◽  
Wibawa Endra Juwana

Thermoelectric generator is solid-state device which convert temperature difference, ∆T into electrical energy based on Seebeck effect phenomenon. The device has been widely used in self-powered system applications. This paper focuses on presentation of methodology for characterizing thermoelectric generators. The measurement of its behavior is performed by varying load resistances. A standard module of thermoelectric generator (TEC1-12710) is used in examination and an instrument setup consists of controllable heat source, controllable cooler, personal computer, data logger MCC DAQ USB-1208LS equipped with two sets of K-type thermocouples. The experiment is performed by measuring output voltage and output current in 4 values of temperature gradient by applying 10 values of resistive loads connected to the thermoelectric output wires. The common parameters studied in this research are output voltage, current and power. Generally, the relationship between parameters agrees with the basic theory and the procedure can be adopted for characterizing other type of thermoelectric generator.



Author(s):  
Sugato Hajra ◽  
Manisha Sahu ◽  
Aneeta Manjari Padhan ◽  
Jaykishon Swain ◽  
Basanta Kumar Panigrahi ◽  
...  

Harvesting mechanical energy from surroundings can be a promising power source for micro/nano-devices. The triboelectric nanogenerator (TENG) works in the principle of triboelectrification and electrostatic induction. So far, the metals...



2019 ◽  
Vol 5 (4) ◽  
pp. eaav6437 ◽  
Author(s):  
Di Liu ◽  
Xing Yin ◽  
Hengyu Guo ◽  
Linglin Zhou ◽  
Xinyuan Li ◽  
...  

In situ conversion of mechanical energy into electricity is a feasible solution to satisfy the increasing power demand of the Internet of Things (IoTs). A triboelectric nanogenerator (TENG) is considered as a potential solution via building self-powered systems. Based on the triboelectrification effect and electrostatic induction, a conventional TENG with pulsed AC output characteristics always needs rectification and energy storage units to obtain a constant DC output to drive electronic devices. Here, we report a next-generation TENG, which realizes constant current (crest factor, ~1) output by coupling the triboelectrification effect and electrostatic breakdown. Meanwhile, a triboelectric charge density of 430 mC m−2 is attained, which is much higher than that of a conventional TENG limited by electrostatic breakdown. The novel DC-TENG is demonstrated to power electronics directly. Our findings not only promote the miniaturization of self-powered systems used in IoTs but also provide a paradigm-shifting technique to harvest mechanical energy.



2021 ◽  
Vol 16 (4) ◽  
pp. 515-521
Author(s):  
Wanglinhan Zhang ◽  
Xinyu Xue

Research on wearable devices has promoted the development of real-time ultraviolet intensity monitoring technology. This paper proposes a self-powered wearable ultraviolet radiation detector based on T-ZnO nanowires/PVDF composite fabric. The soft fabric base allows the device to attach to various muscles of the human body. Due to the piezoelectric and photoelectric properties, the devices can transform mechanical energy into electrical energy. The output closely relates to the ultraviolet intensity. Therefore, this kind of stable, flexible, and micro device can output piezoelectric voltage as both an energy source and a sensing signal on human bodies. Experiments have proved that the wearable ultraviolet detector has high sensing stability and can work on the skin. The self-powered feature allows it to integrate with wireless transmission equipment, which can upload the ultraviolet intensity data collected by the self-powered wearable ultraviolet radiation detector to the Big Data Cloud. This system will contribute to the formation of the Internet of Things.



2012 ◽  
Vol 488-489 ◽  
pp. 1268-1273 ◽  
Author(s):  
Nishchal K. Verma ◽  
Pallavi Singla ◽  
Abhishek Roy

This paper proposes an effective and convenient mechanism to transform and utilize bio-mechanical energy to electrical energy by presenting a self-powered shoe-model in order to tap the energy obtained for charging mobile phone battery. While walking in general, negative work is done by every human being in every single step taken. This negative work can be converted into electrical energy using a dc machine. The resulting energy could serve as ancillary source of energy for charging the batteries. The proposed self-powered shoe-model contains a permanent magnet DC machine, rack and pinion section and a signal conditioning circuit for charging mobile phone battery. The designed shoe-model has been successfully tested on Li-ion battery of a mobile phone from a reputed brand.



Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3913
Author(s):  
Yushin Hara ◽  
Keisuke Otsuka ◽  
Kanjuro Makihara

The objective of this paper is to amplify the output voltage magnitude from a piezoelectric vibration energy harvester under nonstationary and broadband vibration conditions. Improving the transferred energy, which is converted from mechanical energy to electrical energy through a piezoelectric transducer, achieved a high output voltage and effective harvesting. A threshold-based switching strategy is used to improve the total transferred energy with consideration of the signs and amplitudes of the electromechanical conditions of the harvester. A time-invariant threshold cannot accomplish effective harvesting under nonstationary vibration conditions because the assessment criterion for desirable control changes in accordance with the disturbance scale. To solve this problem, we developed a switching strategy for the active harvester, namely, adaptive switching considering vibration suppression-threshold strategy. The strategy adopts a tuning algorithm for the time-varying threshold and implements appropriate intermittent switching without pre-tuning by means of the fuzzy control theory. We evaluated the proposed strategy under three realistic vibration conditions: a frequency sweep, a change in the number of dominant frequencies, and wideband frequency vibration. Experimental comparisons were conducted with existing strategies, which consider only the signs of the harvester electromechanical conditions. The results confirm that the presented strategy achieves a greater output voltage than the existing strategies under all nonstationary vibration conditions. The average amplification rate of output voltage for the proposed strategy is 203% compared with the output voltage by noncontrolled harvesting.



2020 ◽  
Vol 11 ◽  
pp. 1394-1401
Author(s):  
Liangyi Zhang ◽  
Huan Li ◽  
Yiyuan Xie ◽  
Jing Guo ◽  
Zhiyuan Zhu

Recently, there has been growing interest in triboelectric nanogenerators (TENGs) that can effectively convert various forms of mechanical energy input into electrical energy. In the present study, a novel Teflon/vitamin B1 powder based triboelectric nanogenerator (TVB-TENG) is proposed. Paper is utilized as a supporting platform for triboelectrification between a commercial Teflon tape and vitamin B1 powder. The measured open-circuit voltage was approximately 340 V. The TVB-TENG can be applied as a humidity sensor and exhibits a linear and reversible response to the relative humidity of the environment. Moreover, the change in relative humidity is also indicated by the change in luminosity of a set of light-emitting diodes (LEDs) integrated in the TVB-TENG system. The TVB-TENG proposed in this study illustrates a cost-effective method for portable power supply and sensing devices.



Piezoelectric elements are commonly installed in shoe sole to make use of the piezoelectric effect due to the vibration generated by the human motion. Piezoelectric shoe is a great device that can be used to harvest energy and can be improved by adding more piezoelectric elements and providing storage to store the harvested energy. However, not many researchers focus on the analyzation of piezoelectric elements’ shape that may affect the efficiency of energy harvesting. In this paper, piezoelectric energy harvesting shoes are designed with piezoelectric elements installed inside the soles of the shoes, thereby gaining mechanical energy from user while walking and running. The mechanical energy was applied to the piezoelectric elements and converted into electrical energy. Bridge rectifier was used to convert the AC voltage output into DC voltage. The project focused on analyzation of the efficiency between round and square shaped piezoelectric elements. Different shape of the piezoelectric element produced different amount of output voltage. Square shaped piezoelectric tended to produce lesser output voltage than the round piezoelectric element. A round piezoelectric with diameter of 4.5cm produced mean output voltage up to 11.56V and square piezoelectric with size of 4.5cm x 4.5cm produced 6.12V. However, this all depended on how much pressure that was applied onto the piezoelectric elements.



Nanoscale ◽  
2021 ◽  
Author(s):  
Xiaoshuang Zhou ◽  
Xin Chen ◽  
Hao Zhu ◽  
Xu Dong ◽  
lvzhou Li ◽  
...  

Mechanical energy harvesters are widely studied because of their diverse applications, such as harvesting of ocean wave energy, self-powered wireless sensors, portable power supplies and so on. To be feasible,...



Sign in / Sign up

Export Citation Format

Share Document