Design of Peripheral Circuits for the Implementation of Memory Array Using Data-Aware (DA) SRAM Cell in 65 nm CMOS Technology for Low Power Consumption

2016 ◽  
Vol 12 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Ajay Kumar Singh ◽  
Mohammad-Sadegh Saadatzi ◽  
C. Venkataseshaiah
2013 ◽  
Vol 411-414 ◽  
pp. 125-130
Author(s):  
Yan Bo Niu ◽  
An Ping Jiang

SM4 is a 128-bit block cipher used in SOC and smart cards to ensure the safety of data transmission. In order to realize a low power implementation of the SM4 cipher block, some S-boxes were evaluated firstly and we proposed a new architecture of SM4 S-box called MUX S-box with a power consumption of 13.92W@10Mhz on SMIC 0.18m technology, Meanwhile, the implementation of SM4 cipher round based on the SM4 MUX S-box was completed and a low power consumption of 0.33mW @ 10 MHz on 0.18 m CMOS technology is achieved.


Author(s):  
M.S.Z Sarker ◽  
Mokammel Hossain ◽  
Nozmul Hossain ◽  
Md. Rasheduzzaman ◽  
Md. Ashraful Islam

2020 ◽  
Vol 6 (18) ◽  
pp. eaaz6511 ◽  
Author(s):  
Gongjin Li ◽  
Zhe Ma ◽  
Chunyu You ◽  
Gaoshan Huang ◽  
Enming Song ◽  
...  

The sensing module that converts physical or chemical stimuli into electrical signals is the core of future smart electronics in the post-Moore era. Challenges lie in the realization and integration of different detecting functions on a single chip. We propose a new design of on-chip construction for low-power consumption sensor, which is based on the optoelectronic detection mechanism with external stimuli and compatible with CMOS technology. A combination of flipped silicon nanomembrane phototransistors and stimuli-responsive materials presents low-power consumption (CMOS level) and demonstrates great functional expansibility of sensing targets, e.g., hydrogen concentration and relative humidity. With a device-first, wafer-compatible process introduced for large-scale silicon flexible electronics, our work shows great potential in the development of flexible and integrated smart sensing systems for the realization of Internet of Things applications.


Author(s):  
Aswini Valluri ◽  
◽  
Sarada Musala ◽  
Muralidharan Jayabalan ◽  
◽  
...  

There is an immense necessity of several kilo bytes of embedded memory for Biomedical systems which typically operate in the sub-threshold domain with perfect efficiency. SRAMs (Static Random Access Memory) dominates the total power consumption and the overall silicon area, as 70% of the die has been occupied by them. This brief proposes the design of a Transmission gate-based SRAM cell for Bio medical application eliminating the use of peripheral circuitry during the read operation. It commences the read operation directly with the help of Transmission gates with which the data stored in the storage nodes can be read, instead of using the precharge and sense amplifier circuits which suits better for the implantable devices. This topology offers smaller area, reduced delay, low power consumption as well as improved data stabilization in the read operation. The cell is implemented in 45nm CMOS technology operated at 0.45V.


Sign in / Sign up

Export Citation Format

Share Document