Facile preparation of hierarchical porous 2MgO · B2O3 · 2H2O nanostructure with ultra-high adsorption performance for triphenylmethane dyes removal

2020 ◽  
Vol 10 (10) ◽  
pp. 1668-1676
Author(s):  
Rui-Feng Guo ◽  
Wen-Ru Ma ◽  
Ming-Zhen Wang ◽  
Zhi-Hong Liu

The fan-like 2MgO · B2O3 · 2H2O porous nanostructures were prepared by a solvothermal approach. FT-IR, XRD, TG-DTA, SEM, and TEM were used to characterize the obtained sample, which was constructed by nanobelts with 20 nm in width, about 5 nm in thickness and 2 μm in length. Its specific surface area was measured as 118.94 m2/g. It exhibited ultra-high removal of triphenylmethane dyes for AF, MG and BF from aqueous solution, in which the maximum adsorption capacities are much higher than those of most reported adsorbents. The higher absorption for triphenylmethane dyes can be attributed to the positive surface charge, the main existing mesopores and macropores, and larger specific surface area of the prepared 2MgO · B2O3 · 2H2O sample, which make the absorbent and anionic dye molecules existing both the stronger electrostatic attraction and hydrogen bonds of N–H· · · O and O–H· · · N. The adsorption kinetics and isotherm were found to conform to pseudo-second-order model and Langmuir model. The competitive adsorption for BF and MG and the adsorption mechanism were also investigated. The as-prepared sample is of larger adsorption capacity and good reusability, which makes it valuable in potential wastewater treatment application.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Author(s):  
Yaqi Yang ◽  
Ziqiang Shao ◽  
Feijun Wang

Abstract Due to the low specific capacitance and small specific surface area of conventional carbon materials used as electrode materials for double-layer capacitors, the search for more ideal materials and ingenious preparation methods remains a major challenge. In this study, fractional porous carbon nanosheets were prepared by co-doping Fe and N with chitosan as nitrogen source. The advantage of this method is that the carbon nanosheets can have a large number of pore structures and produce a large specific surface area. The presence of Fe catalyzes the graphitization of carbon in the carbon layer during carbonization process, and further increases the specific surface area of the electrode material. This structure provides an efficient ion and electron transport pathway, which enables more active sites to participate in the REDOX reaction, thus significantly enhancing the electrochemical performance of SCs. The specific surface area of CS-800 is up to 1587 m2 g−1. When the current density is 0.5 A g−1, the specific capacitance of CS-800 reaches 308.84 F g−1, and remains 84.61 % of the initial value after 10,000 cycles. The Coulomb efficiency of CS-800 is almost 100 % after a long cycle, which indicates that CS-800 has more ideal double-layer capacitance and pseudo capacitance.


2019 ◽  
Vol 26 (1) ◽  
pp. 99-102
Author(s):  
Dāvis CONKA ◽  
Līga AVOTINA ◽  
Ruta SVINKA ◽  
Visvaldis SVINKA ◽  
Laris BAUMANE ◽  
...  

Natural clay is a perspective material for application as sorbents for wastewater treatment as well as for sorption of radionuclides, where the properties of the clays can be changed under influence of ionizing radiation. For application of Latvian illite/kaolinite clays for isotope sorption it is important to characterize the physic-chemical properties of pre-prepared air dried clays. Two fractions of the illite clays were selected. A fraction with grain size 100 μm (SiO2 content 60.9 ± 1.5 wt.%, specific surface area 35 m2/g) and a sand free fraction – 2 μm (SiO2 47.7 ± 1.9 wt.%, specific surface area 38 m2/g). Selected fractions were irradiated with accelerated electrons (5 MeV, ELU-4, Salaspils, absorbed dose up to 500 kGy). Non-irradiated and irradiated clays were analysed with means of Fourier transform infrared (FT-IR) spectrometry.  


NANO ◽  
2016 ◽  
Vol 11 (05) ◽  
pp. 1650052 ◽  
Author(s):  
Ying Chen ◽  
Shenglun Ji ◽  
Tengfei Qiao ◽  
Shuang Miao ◽  
Yu Zhao

Graphene–Bi2WO6 composite photocatalyst with excellent photocatalytic properties were synthetized by ultrasonic-microwave synergistic method. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier infrared (FT-IR) spectrum, specific surface area analyzer (BET) and UV-Vis diffuse reflectance spectra. The photocatalytic activities of as-prepared samples were evaluated by degradation of pyridine in light oil under visible light irradiation. The results show that graphene changed appearance structure of Bi2WO6, which prevented the Bi2WO6 nanosheets reunion arrangement, and increased specific surface area of the catalyst. It can also reduce the recombination probability of photogenerated carrier, so as to improve the photocatalytic activity of the composite catalyst. The optimal amount of graphene is 2%, with the denitrification rate as high as 89.28%, much higher than that of pure Bi2WO6.


RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19934-19939 ◽  
Author(s):  
Yuhang Zhao ◽  
Ping Liu ◽  
Xiaodong Zhuang ◽  
Dongqing Wu ◽  
Fan Zhang ◽  
...  

A hierarchical porous polymeric network (HPPN) with ultrahigh specific surface area up to 2870 m2 g−1 was synthesized via a one-step ionothermal synthesis method without using templates.


2019 ◽  
Vol 12 (6) ◽  
pp. 1979-1988 ◽  
Author(s):  
Xiao Xu ◽  
Hongjun Zhang ◽  
Junxuan Ao ◽  
Lu Xu ◽  
Xiyan Liu ◽  
...  

The development of high specific surface area amidoxime-based polymeric (H-ABP) fibers presents a new technology for the synthesis of highly efficient adsorbents for uranium extraction from seawater (UES), thus opening a whole new means of nuclear fuel production from the ocean.


RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 33872-33882
Author(s):  
Genxing Zhu ◽  
Qi Liu ◽  
Fengyi Cao ◽  
Qi Qin ◽  
Mingli Jiao

Silkworm cocoon derived N, O-HPC (SBET = 2270.19 m2 g−1) was synthesized, and demonstrated exceptionally high uptake of MB (2104.29 mg g−1).


2012 ◽  
Vol 427 ◽  
pp. 123-127
Author(s):  
Yuan Hui Ma ◽  
Lei Zhang ◽  
Cheng Chun Tang

The nanoporous metal-organic frameworks were synthesized under solvothermal conditions using organic solvent dimethylformamide. The samples were characterized by XRD, SEM, TGA, FT-IR and specific surface area for their properties difference. When the reaction temperature rises, the particle size becomes larger. All TGA curves are the basically same, the framework structure begins to be destroyed from 500°C up to around 600°C. The metal-organic frameworks accepted at reaction temperature 190°C have larger specific surface area and better structure stability.


2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Amal Altallhi ◽  
Salwa Moray ◽  
Seham Shaban ◽  
Sahar Ahmed

<p>Nanocrystalline nickel oxide (NiO) and copper oxide (CuO) have been synthesized in a water-in-oil microemulsion. The as-synthesized samples were characterized by X-ray diffraction (XRD), Electron Spin Resonance (E.S.R.), transmission electron microscopy (T.E.M.), and Specific Surface Area (S.S.A.). The particle size of nickel oxide and copper oxide can be controlled from 10.0 to 21.5 and 12.5 to 25.0 nm, respectively, at a different time of calcination temperature with a fixed proportion of water, surfactant, and oil in the microemulsion. Also, the results showed that the specific surface area (89.96 m<sup>2</sup> g<sup>-1</sup>) and pore diameter (8.11 nm) of the prepared nano NiO are higher than the specific surface area (71.96 m<sup>2</sup> g<sup>-1</sup>) and pore diameter (3.71 nm) of the prepared nano CuO. An adsorption test was carried out to show the efficiency of these prepared NiO and CuO nanoparticles for the Adsorption of T.N.T. in an aqueous solution. The removal efficiencies of both nano NiO and CuO were achieved at 90.06% and 77.0%, respectively.<strong></strong></p><p>Additionally, NiO and CuO nanoparticles were regenerated for five cycles. The Kinetic models of Pseudo first-order and pseudo-second-order were described. The results demonstrated that T.N.T. adsorption on both nano adsorbents follows the pseudo-second-order model.</p>


2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


Sign in / Sign up

Export Citation Format

Share Document