Comparison of Mechanical Enhancing Effects on Chemically Vapor-Deposited 3C-SiC with Different Crystallographic Orientation

2018 ◽  
Vol 10 (5) ◽  
pp. 643-650
Author(s):  
Jung Ho Shin ◽  
Daejong Kim ◽  
Hyeon-Geun Lee ◽  
Ji Yeon Park ◽  
Weon-Ju Kim
Author(s):  
B. Cunningham ◽  
D.G. Ast

There have Been a number of studies of low-angle, θ < 4°, [10] tilt boundaries in the diamond lattice. Dislocations with Burgers vectors a/2<110>, a/2<112>, a<111> and a<001> have been reported in melt-grown bicrystals of germanium, and dislocations with Burgers vectors a<001> and a/2<112> have been reported in hot-pressed bicrystals of silicon. Most of the dislocations were found to be dissociated, the dissociation widths being dependent on the tilt angle. Possible dissociation schemes and formation mechanisms for the a<001> and a<111> dislocations from the interaction of lattice dislocations have recently been given.The present study reports on the dislocation structure of a 10° [10] tilt boundary in chemically vapor deposited silicon. The dislocations in the boundary were spaced about 1-3nm apart, making them difficult to resolve by conventional diffraction contrast techniques. The dislocation structure was therefore studied by the lattice-fringe imaging technique.


Author(s):  
G.E. Ice

The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. With new x-ray optics these microprobes can achieve micron and submicron spatial resolutions. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature will have important applications to materials science. For example, x-ray fluorescent microanalysis of materials can reveal elemental distributions with greater sensitivity than alternative nondestructive probes. In materials, segregation and nonuniform distributions are the rule rather than the exception. Common interfaces to whichsegregation occurs are surfaces, grain and precipitate boundaries, dislocations, and surfaces formed by defects such as vacancy and interstitial configurations. In addition to chemical information, an x-ray diffraction microprobe can reveal the local structure of a material by detecting its phase, crystallographic orientation and strain.Demonstration experiments have already exploited the penetrating nature of an x-ray microprobe and its inherent elemental sensitivity to provide new information about elemental distributions in novel materials.


Author(s):  
M. D. Vaudin ◽  
J. P. Cline

The study of preferred crystallographic orientation (texture) in ceramics is assuming greater importance as their anisotropic crystal properties are being used to advantage in an increasing number of applications. The quantification of texture by a reliable and rapid method is required. Analysis of backscattered electron Kikuchi patterns (BEKPs) can be used to provide the crystallographic orientation of as many grains as time and resources allow. The technique is relatively slow, particularly for noncubic materials, but the data are more accurate than any comparable technique when a sufficient number of grains are analyzed. Thus, BEKP is well-suited as a verification method for data obtained in faster ways, such as x-ray or neutron diffraction. We have compared texture data obtained using BEKP, x-ray diffraction and neutron diffraction. Alumina specimens displaying differing levels of axisymmetric (0001) texture normal to the specimen surface were investigated.BEKP patterns were obtained from about a hundred grains selected at random in each specimen.


Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The fabrication of the aluminum bridge test vehicle for use in the crystallographic studies of electromigration involves several photolithographic processes, some common, while others quite unique. It is most important to start with a clean wafer of known orientation. The wafers used are 7 mil thick boron doped silicon. The diameter of the wafer is 1.5 inches with a resistivity of 10-20 ohm-cm. The crystallographic orientation is (111).Initial attempts were made to both drill and laser holes in the silicon wafers then back fill with photoresist or mounting wax. A diamond tipped dentist burr was used to successfully drill holes in the wafer. This proved unacceptable in that the perimeter of the hole was cracked and chipped. Additionally, the minimum size hole realizable was > 300 μm. The drilled holes could not be arrayed on the wafer to any extent because the wafer would not stand up to the stress of multiple drilling.


2007 ◽  
Vol 537-538 ◽  
pp. 389-396 ◽  
Author(s):  
Ibolya Kardos ◽  
Zoltán Gácsi ◽  
Péter János Szabó

Color etching is a widely used technique for visualizing different phases in metallic materials. Its advantage to the traditional etching techniques is that it gives additional information within one phase, namely, the color shade of a given phase can change in a certain range. This paper demonstrates that, due to the physics of the color etching, the shade of a phase also depends on the crystallographic orientation of the investigated grain. As a test material, spheroidal graphite cast iron was used, and individual grain orientation was identified by automated electron back scattering diffraction (EBSD). Results showed that there is a strong correlation between grain orientation and the shades obtained by color etching.


2021 ◽  
Vol 533 (8) ◽  
pp. 2170025
Author(s):  
Arseniy M. Buryakov ◽  
Maxim S. Ivanov ◽  
Dinar I. Khusyainov ◽  
Anastasia V. Gorbatova ◽  
Vladislav R. Bilyk ◽  
...  

2021 ◽  
pp. 102104
Author(s):  
Xianglong Wang ◽  
Oscar Sanchez-Mata ◽  
Sıla Ece Atabay ◽  
Jose Alberto Muñiz-Lerma ◽  
Mohammad Attarian Shandiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document