Genipin-Cross-Linked Layer-by-Layer Chitosan/Hydroxyapatite Composite Rod for Bone Fracture Fixation

2021 ◽  
Vol 13 (3) ◽  
pp. 364-370
Author(s):  
Xing-Ming Wang ◽  
Wei Zhi ◽  
Liu Liu ◽  
Xi-Ming Pu

The synthesis and optimization of chitosan-based inorganic/organic composites have gained growing interest in the last years. In the current study, genipin crosslinked hydroxyapatite/Chitosan (HA/CHI) composite rods (GCHR), which had been prepared and reported in our prevenient studies, were further evaluated via their formation of layer-by-layer structure, cross-linking degree and so on. The cross-linking degree in the range of 28.73∼43.32% was moderate for the in situ periodic precipitation and the formation of homogeneous HA/CHI/Genipin composite rods. In this range the composite rods could obtain a complex structure combined with layer-by-layer structure and radial spokes structure. Benifiting from the special structure, the rods can obtain superior mechanical properties and become fresh device for internal fixation of fracture. Mouse bone marrow mesenchymal stem cells (mBMSCs) were co-cultured with extract of the GCHR100 rods to evaluate the cytocompatibility of the composite. The results showed that the leachate of the GCHR100 rods significantly up-regulated osteogenesis-related genes like ALP, Runx2 and OCN after 7 days compared with control (P< 0.05).

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Zhengke Wang ◽  
Qiaoling Hu ◽  
Lei Cai

Chitin fiber (CHF) and chitosan (CS) 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D) between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.


Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

InfoMat ◽  
2021 ◽  
Author(s):  
Ramin Rojaee ◽  
Samuel Plunkett ◽  
Md Golam Rasul ◽  
Meng Cheng ◽  
Vahid Jabbari ◽  
...  

2021 ◽  
Author(s):  
Kristina Ashurbekova ◽  
Karina Ashurbekova ◽  
Iva Saric ◽  
Evgeny Modin ◽  
Mladen Petravic ◽  
...  

We developed a thin film growth with a radical-initiated cross-linking of vinyl groups in a layer-by-layer manner via molecular layer deposition (MLD). The cross-linked film exhibited improved properties like 12% higher density and enhanced stability compared to the non-cross-linked film.


2013 ◽  
Vol 49 (61) ◽  
pp. 6879 ◽  
Author(s):  
Mao Li ◽  
Jian Zhang ◽  
Hai-Jing Nie ◽  
Meiyong Liao ◽  
Liwen Sang ◽  
...  

2012 ◽  
Vol 12 (9) ◽  
pp. 1220-1231 ◽  
Author(s):  
Adrian Sulistio ◽  
Anton Blencowe ◽  
Jiapei Wang ◽  
Gary Bryant ◽  
Xiaoqing Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document